scholarly journals The Study of Laccase Immobilization Optimization and Stability Improvement on CTAB-KOH Modified Biochar

Author(s):  
Zhaobo Wang ◽  
Dajun Ren ◽  
Zihang Li ◽  
Hongyan Yu ◽  
Shuqin Zhang ◽  
...  

Abstract Background: In this paper, cetyltrimethylammonium bromide (CTAB)-KOH modified biochar (CKMB) was used to immobilize laccase by adsorption method (laccase@CKMB). Based on the results of the single-factor experiments, the optimal loading conditions of laccase@CKMB were studied with the assistance of Design-Expert 12 and response surface methods. Results: The predicted optimal experimental conditions were laccase dosage 1.78 mg/mL, pH 3.1 and 312 K. Under these conditions, the activity recovery of laccase@CKMB was the highest, reaching 61.78 %. Then, the CKMB and laccase@CKMB were characterized by TGA, FT-IR, XRD, BET and SEM, and the results showed that laccase could be well immobilized on CKMB, the maximum enzyme loading could reach 57.5 mg/g. Compared to free laccase, the storage and pH stability of laccase@CKMB was improved greatly. The laccase@CKMB retained about 40 % of relative activity (4 ℃, 30 days) and more than 50 % of relative activity at pH 2-6. In addition, the laccase@CKMB indicated the reusability up to 6 reaction cycles while retaining 45.1 % of relative activity. Moreover, the thermal deactivation kinetic studies of laccase@CKMB showed a lower k value (0.00275 min-1) and higher t1/2 values (252.0 min) than the k value (0.00573 min-1) and t1/2 values (121.0 min) of free laccase. Conclusions: In summary, we explored scientific and reasonable immobilization conditions of laccase@CKMB, and the laccase@CKMB possessed relatively better stabilities, which gave the immobilization of laccase on this cheap and easily available carrier material the possibility of industrial applications.

2021 ◽  
Author(s):  
Zhaobo Wang ◽  
Dajun Ren ◽  
Shan Jiang ◽  
Hongyan Yu ◽  
Yaohui Cheng ◽  
...  

Abstract Background: Although laccase has a good catalytic oxidation ability, free laccase shows a poor stability. Enzyme immobilization is a common method to improve enzyme stability and endow the enzyme with reusability. Adsorption is the simplest and common method. Modified biochar has attracted great attention due to its excellent performance. Results: In this paper, cetyltrimethylammonium bromide (CTAB)-KOH modified biochar (CKMB) was used to immobilize laccase by adsorption method (laccase@CKMB). Based on the results of the single-factor experiments, the optimal loading conditions of laccase@CKMB were studied with the assistance of Design-Expert 12 and response surface methods. The predicted optimal experimental conditions were laccase dosage 1.78 mg/mL, pH 3.1 and 312 K. Under these conditions, the activity recovery of laccase@CKMB was the highest, reaching 61.78 %. Then, the CKMB and laccase@CKMB were characterized by TGA, FT-IR, XRD, BET and SEM, and the results showed that laccase could be well immobilized on CKMB, the maximum enzyme loading could reach 57.5 mg/g. Compared to free laccase, the storage and pH stability of laccase@CKMB was improved greatly. The laccase@CKMB retained about 40 % of relative activity (4 ℃, 30 days) and more than 50 % of relative activity at pH 2-6. In addition, the laccase@CKMB indicated the reusability up to 6 reaction cycles while retaining 45.1 % of relative activity. Moreover, the thermal deactivation kinetic studies of laccase@CKMB showed a lower k value (0.00275 min-1) and higher t1/2 values (252.0 min) than the k value (0.00573 min-1) and t1/2 values (121.0 min) of free laccase. Conclusions: We explored scientific and reasonable immobilization conditions of laccase@CKMB, and the laccase@CKMB possessed relatively better stabilities, which gave the immobilization of laccase on this cheap and easily available carrier material the possibility of industrial applications.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhaobo Wang ◽  
Dajun Ren ◽  
Shan Jiang ◽  
Hongyan Yu ◽  
Yaohui Cheng ◽  
...  

Abstract Background Although laccase has a good catalytic oxidation ability, free laccase shows a poor stability. Enzyme immobilization is a common method to improve enzyme stability and endow the enzyme with reusability. Adsorption is the simplest and common method. Modified biochar has attracted great attention due to its excellent performance. Results In this paper, cetyltrimethylammonium bromide (CTAB)-KOH modified biochar (CKMB) was used to immobilize laccase by adsorption method (laccase@CKMB). Based on the results of the single-factor experiments, the optimal loading conditions of laccase@CKMB were studied with the assistance of Design-Expert 12 and response surface methods. The predicted optimal experimental conditions were laccase dosage 1.78 mg/mL, pH 3.1 and 312 K. Under these conditions, the activity recovery of laccase@CKMB was the highest, reaching 61.78%. Then, the CKMB and laccase@CKMB were characterized by TGA, FT-IR, XRD, BET and SEM, and the results showed that laccase could be well immobilized on CKMB, the maximum enzyme loading could reach 57.5 mg/g. Compared to free laccase, the storage and pH stability of laccase@CKMB was improved greatly. The laccase@CKMB retained about 40% of relative activity (4 °C, 30 days) and more than 50% of relative activity at pH 2.0–6.0. In addition, the laccase@CKMB indicated the reusability up to 6 reaction cycles while retaining 45.1% of relative activity. Moreover, the thermal deactivation kinetic studies of laccase@CKMB showed a lower k value (0.00275 min− 1) and higher t1/2 values (252.0 min) than the k value (0.00573 min− 1) and t1/2 values (121.0 min) of free laccase. Conclusions We explored scientific and reasonable immobilization conditions of laccase@CKMB, and the laccase@CKMB possessed relatively better stabilities, which gave the immobilization of laccase on this cheap and easily available carrier material the possibility of industrial applications.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

AbstractIn the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDAX) and N2 adsorption–desorption isotherm (BET). XRD and FT-IR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30 ℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption–desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2741
Author(s):  
Pengcheng Lv ◽  
Ruihong Meng ◽  
Zhongyang Mao ◽  
Min Deng

In this study, the hydrated sodium aluminosilicate material was synthesized by one-step hydrothermal alkaline desilication using fly ash (FA) as raw material. The synthesized materials were characterized by XRD, XRF, FT-IR and SEM. The characterization results showed that the alkali-soluble desilication successfully had synthesized the sodium aluminosilicate crystalline (N-A-S-H) phase of sodalite-type (SOD), and the modified material had good ionic affinity and adsorption capacity. In order to figure out the suitability of SOD as an adsorbent for the removal of ammonium and phosphorus from wastewater, the effects of material dosing, contact time, ambient pH and initial solute concentration on the simultaneous removal of ammonium and phosphorus are investigated by intermittent adsorption tests. Under the optimal adsorption conditions, the removal rate of ammonium was 73.3%, the removal rate of phosphate was 85.8% and the unit adsorption capacity reached 9.15 mg/L and 2.14 mg/L, respectively. Adsorption kinetic studies showed that the adsorption of ammonium and phosphorus by SOD was consistent with a quasi-secondary kinetic model. The adsorption isotherm analysis showed that the equilibrium data were in good agreement with the Langmuir and Freundlich model. According to thermodynamic calculations, the adsorption of ammonium and phosphorus was found to be a heat-absorbing and spontaneous process. Therefore, the preparation of SOD by modified FA has good adsorption properties as adsorbent and has excellent potential for application in the removal of contaminants from wastewater.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 796
Author(s):  
Kaile Zhao ◽  
Chao Ma ◽  
Guohua Gu ◽  
Zhiyong Gao

The study of the depression effect of non-toxic depressants on the flotation separation of chalcopyrite from galena is of great importance for both industrial applications and theoretical research. The mixed depressant (DFinal) of four common inhibitors—sodium carboxymethyl cellulose, sodium silicate, sodium sulfite, and zinc sulfate—exhibited high selectivity during the separation of chalcopyrite from galena. Flotation tests on an industrial copper–lead bulk concentrate showed that using this depressant mixture can achieve highly efficient separation of chalcopyrite from galena at the natural pH of the pulp. Copper and lead concentrates were produced at grades of 21.88% (Cu) and 75.53% (Pb), with recoveries of 89.07% (Cu) and 98.26% (Pb). This showed a similar performance of DFinal with dichromate, which is a depressant that is widely used in industry, but without the environmental risks or the need for pH control. Zeta potential and Fourier transform infrared (FT-IR) results showed that interaction between the surface of the chalcopyrite and the mixed depressant was prevented by pre-treatment with a composite thiophosphate collector (CSU11), while the mixed depressant could expel/replace the composite thiophosphate on the surface of galena by chemical adsorption, depressing its flotation. This is the reason why this non-toxic depressant achieved the selective depression of galena from chalcopyrite, leading to efficient flotation separation.


1995 ◽  
Vol 12 (3) ◽  
pp. 221-229 ◽  
Author(s):  
S.A. El-Hakam

The effect of heat treatment of manganese oxide/alumina catalysts of various manganese content on the structural and textural properties and the catalytic decomposition of hydrogen peroxide were investigated. The FT-IR results have shown that depending on the calcination temperature and metal loading MnO2 and MnO3 are formed on the investigated samples. No spinel structure was detected under the experimental conditions. The surface areas were found to decrease with increasing calcination temperature and metal content up to 30 wt.% Mn. The mean pore radius increased with both calcination temperature and Mn content. The rate of catalytic decomposition of H2O2 was found to depend on the pH, the calcination temperature and the state of Mn on the catalyst surface.


Author(s):  
Peng Fei Yang ◽  
Yan Hong Yu ◽  
Shun Ping Wang ◽  
Tian Duo Li

2019 ◽  
Vol 65 (1) ◽  
pp. 21-27
Author(s):  
Qiuyun Zhang ◽  
Dandan Lei ◽  
Qianqian Luo ◽  
Taoli Deng ◽  
Jingsong Cheng ◽  
...  

Biodiesel was synthesized from oleic acid using Ni (II)-exchanged heteropolyacids immobilized on silica (Ni0.5H3SiW / SiO2 ) as a solid acid catalyst. Based on detailed analyses of FT-IR, XRD, TG and SEM, the structural, surface and thermal stability of Ni0.5H3SiW / SiO2 were investigated. Obtained results demonstrated that the Keggin structure was well in the immobilization process and possess a high thermal stability. Various esterification reaction conditions and reusability of catalyst were studied. High oleic acid conversion of 81.4 % was observed at a 1:22 mole ratio (oleic acid: methanol), 3 wt. % catalyst at 70 °C for 4 h. The Ni0.5H3SiW / SiO2 catalyst was reused for several times and presented relatively stable. More interestingly, the kinetic studies revealed the esterification process was compatible with the first order model, and a lower activation energy was obtained in this catalytic system.


Sign in / Sign up

Export Citation Format

Share Document