scholarly journals Comparative Evaluation of Madhuca Longifolia and Jatropha Curcas Extracted Biodiesel.

Author(s):  
Rajeshwari Chatterjee ◽  
Sanat Kumar Mukherjee ◽  
Biswajit Paul ◽  
Somnath Chattopadhyaya

Abstract In order to fulfil the growing need to replace fossil fuels, investigations exploring the production of biodiesel from agricultural biomass have gained attention. The purpose behind this study is to examine the efficiency of biodiesel extracted from Madhuca longifolia and Jatropha curcas by means of pre-treatment followed by two step acid-base homogeneous catalyst method. The Madhuca and Jatropha biodiesels were blended with diesel at different percentages. Fourier Transform Infrared Spectroscopy (FTIR) showed a strong presence of fatty acid profile, and triglyceride ester linkage at 1744 cm− 1. UV–Vis spectra confirmed the presence of conjugated dienes in the extracted biodiesels. UV absorbance at 320 nm decreases linearly with blend percentage. 1HNMR and 13C NMR confirmed the presence of methyl ester moiety at 3.6 ppm and methoxy carbon at 51.2 ppm in biodiesel distinguishing it from diesel. Raman spectra exhibited C = O stretching at 1725 cm− 1 indicating conversion of Madhuca and Jatropha oil into biodiesel. The engine performance and emission tests of these biodiesels were evaluated. In the engine performance tests, the variations of brake specific fuel consumption (BSFC), exhaust gas temperature (EGT), and brake thermal efficiency (BTE) versus brake power were studied. The emission tests of different blends were done in terms of carbon mono-oxide, nitrous oxide, and unburnt hydrocarbon (UHC). The Jatropha biodiesel exhibited less mean BSFC, EGT and emitted less CO and UHC than Madhuca biodiesel. The average decrease in BTE was more in Jatropha biodiesel than Madhuca biodiesel.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Ameer Suhel ◽  
Norwazan Abdul Rahim ◽  
Mohd Rosdzimin Abdul Rahman ◽  
Khairol Amali Bin Ahmad ◽  
Yew Heng Teoh ◽  
...  

In recent years, industries have been investing to develop a potential alternative fuel to substitute the depleting fossil fuels which emit noxious emissions. Present work investigated the effect of ferrous ferric oxide nano-additive on performance and emission parameters of compression ignition engine fuelled with chicken fat methyl ester blends. The nano-additive was included with various methyl ester blends at different ppm of 50, 100, and 150 through the ultrasonication process. Probe sonicator was utilized for nano-fuel preparation to inhibit the formation of agglomeration of nanoparticles in base fuel. Experimental results revealed that the addition of 100 ppm dosage of ferrous ferric oxide nanoparticles in blends significantly improves the combustion performance and substantially decrease the pernicious emissions of the engine. It is also found from an experimental results analysis that brake thermal efficiency (BTE) improved by 4.84%, a reduction in brake specific fuel consumption (BSFC) by 10.44%, brake specific energy consumption (BSEC) by 9.44%, exhaust gas temperature (EGT) by 19.47%, carbon monoxides (CO) by 53.22%, unburned hydrocarbon (UHC) by 21.73%, nitrogen oxides (NOx) by 15.39%, and smoke by 14.73% for the nano-fuel B20FFO100 blend. By seeing of analysis, it is concluded that the doping of ferrous ferric oxide nano-additive in chicken fat methyl ester blends shows an overall development in engine characteristics.


2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


2015 ◽  
Vol 1113 ◽  
pp. 674-678
Author(s):  
Syarifah Yunus ◽  
Noriah Yusoff ◽  
Muhammad Faiz Fikri Ahmad Khaidzir ◽  
Siti Khadijah Alias ◽  
Freddawati Rashiddy Wong ◽  
...  

The continued using of petroleum energy as a sourced for fuel is widely recognized as unsustainable because of the decreasing of supplies while increasing of the demand. Therefore, it becomes a global agenda to develop a renewable, sustainable and alternative fuel to meets with all the demand. Thus, biodiesel seems to be one of the best choices. In Malaysia, the biodiesel used is from edible vegetable oil sources; palm oil. The uses of palm oil as biodiesel production source have been concern because of the competition with food materials. In this study, various types of biodiesel feedstock are being studied and compared with diesel. The purpose of this comparison is to obtain the optimum engine performance of these different types of biodiesel (edible, non-edible, waste cooking oil) on which are more suitable to be used as alternative fuel. The optimum engine performance effect can be obtains by considering the Brake Power (BP), Specific Fuel Consumption (SFC), Exhaust Gas Temperature (EGT) and Brake Thermal Efficiency (BTE).


2015 ◽  
Vol 773-774 ◽  
pp. 430-434
Author(s):  
Azizul Mokhtar ◽  
Nazrul Atan ◽  
Najib Rahman ◽  
Amir Khalid

Bio-additive is biodegradable and produces less air pollution thus significant for replacing the limited fossil fuels and reducing threats to the environment from exhaust emissions and global warming. Instead, the bio-additives can remarkably improve the fuel economy SI engine while operating on all kinds of fuel. Some of the bio-additive has the ability to reduce the total CO2 emission from internal petrol engine. This review paper focuses to determine a new approach in potential of bio-additives blends operating with bio-petrol on performance and emissions of spark ignition engine. It is shown that the variant in bio-additives blending ratio and engine operational condition are reduced engine-out emissions and increased efficiency. It seems that the bio-additives can increase the maximum cylinder combustion pressure, improve exhaust emissions and largely reduce the friction coefficient. The review concludes that the additives usage in bio-petrol is inseparable for the better engine performance and emission control and further research is needed to develop bio-petrol specific additives.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4530 ◽  
Author(s):  
Gabriel Talero ◽  
Camilo Bayona-Roa ◽  
Giovanny Muñoz ◽  
Miguel Galindo ◽  
Vladimir Silva ◽  
...  

Aeronautic transport is a leading energy consumer that strongly contributes to greenhouse gas emissions due to a significant dependency on fossil fuels. Biodiesel, a substitution of conventional fuels, is considered as an alternative fuel for aircrafts and power generation turbine engines. Unfortunately, experimentation has been mostly limited to small scale turbines, and technical challenges remain open regarding operational safety. The current study presents the facility, the instrumentation, and the measured results of experimental tests in a 640 kW full-scale J69-T-25A turbojet engine, operating with blends of Jet A1 and oil palm biodiesel with volume contents from 0% to 10% at different load regimes. Findings are related to the fuel injection system, the engine thrust, and the emissions. The thrust force and the exhaust gas temperature do not expose a significant variation in all the operation regimes with the utilization of up to 10% volume content of biodiesel. A maximum increase of 36% in fuel consumption and 11% in injection pressure are observed at idle operation between B0 and B10. A reduction of the CO and HC emissions is also registered with a maximum variation at the cruise regime (80% Revolutions Per Minute—RPM).


2015 ◽  
Vol 813-814 ◽  
pp. 810-814
Author(s):  
B.R. Omkaresh ◽  
S.B. Arun ◽  
R. Suresh ◽  
K.V. Yathish

Now a days increasing in prices and depletion of fossil fuels, creates very necessary to find out an alternative fuel (biodiesel) from renewable natural resources. This paper deals with the transesterification of animal fat (dairy scum oil) to obtain Fatty Acid Methyl Ester (FAME) or biodiesel in presence of calcium oxide catalyst at 65°C. The properties of produced biodiesels and their blend for different ratios (B10, B20, B30 and B100) are comparable with properties of diesel and ASTM biodiesel standards. Tests have been conducted on CI engine for different blends of biodiesel with standard diesel, at an engine speed of 1500 rpm, fixed compression ratio 17.5, fixed injection pressure of 200bar and varying brake power. The performance parameters includes brake thermal efficiency, brake specific fuel consumption, Exhaust gas temperature and emissions parameters as Carbon monoxide (CO), Carbon dioxide (CO2), Hydrocarbon (HC) and Oxides of nitrogen (NOx) varying against Brake Power (BP).


2012 ◽  
Vol 424-425 ◽  
pp. 347-351 ◽  
Author(s):  
Yong Sheng Shi ◽  
Jun Jie Yue ◽  
Yun Xue Song

Based on the research of complexity and non-linearity of aero-engine exhaust gas temperature (EGT) system, a regularization chaotic prediction model was proposed to build short time forecasting model of EGT. In this paper, in order to gain the best parameter to improve the accuracy of the forecasting model, a simple search algorithm arithmetic was adopted. The simulation analysis shows that the proposed forecasting model obviously exceeded the traditional chaotic forecasting model on prediction accuracy. Therefore, this arithmetic is efficient and feasible for a short-term prediction of aero-engine exhaust gas temperature


Author(s):  
Jaspreet Hira ◽  
Basant Singh Sikarwar ◽  
Rohit Sharma ◽  
Vikas Kumar ◽  
Prakhar Sharma

In this research work, a surge tank is developed and utilised in the diesel engine for controlling the NOX emission. This surge tank acts as a damper for fluctuations caused by exhaust gases and also an intercooler in reducing the exhaust gas temperature into the diesel engine intake manifold. With the utilisation of the surge tank, the NOX emission level has been reduced to approximately 50%. The developed surge tank is proved to be effective in maintaining the circulation of water at appropriate temperatures. A trade-off has been established between the engine performance parameters including the brake thermal efficiency, brake specific fuel consumption, exhaust gas temperature and all emission parameters including HC and CO.


2018 ◽  
Vol 7 (3) ◽  
pp. 1040
Author(s):  
Byungmo Yang ◽  
M A. Kalam ◽  
Haengmuk Cho

The exhaustion of fossil fuels and sharp rise in crude oil prices has led to the development of various alternative fuels. Alternative fuels are a necessity to meet rising energy consumption rates and to ensure eco-friendly growth. Alternative fuels that can be regenerated, are sustainable and have clean burning capacity to help promote an eco-friendly development. Whereas there have been various ideas and technologies relating to biodiesel as an alternative fuel, these tend to be restricted to the distant future insofar as compression-ignition engines are concerned. Biodiesel, produced by reacting triglycerides which are the main component of animal or plant-based fatty acids with methanol, is known to be an eco-friendly alternative fuel that can take the place of conventional petroleum diesel. In the present study, biodiesel (palm oil) was mixed at a certain ratio with commercially sold diesel, then introduced into a TCDI engine which was run at low load conditions for engine performance and exhaust gas measurement. Both engine output and torque were reduced, and fuel consumption increased to make up for the reduction in output. There were slight reductions in NOx and CO2 emissions, but changes in CO and HC emissions were negligible.  


Author(s):  
Howard Harris ◽  
Ivan Piñeiro ◽  
Tom Norris

A field test was conducted on a three splitter diffuser and a vaneless diffuser (no splitters) to determine, the pressure recovery coefficient, effects on engine performance, exhaust collector temperature distribution, and exhaust gas noise. This paper presents the cause of the mechanical failure of the three splitter diffuser, basic diffuser design, field test instrumentation, and the test results. The test results found the vaneless diffuser had a higher pressure recovery, created a lower back pressure, and did not raise the exhaust gas temperature (EGT) nor fuel consumption of the engine, as compared to the three splitter diffuser.


Sign in / Sign up

Export Citation Format

Share Document