scholarly journals Mean States and Future Projections of Precipitation Over the Monsoon Transitional Zone in China in CMIP5 and CMIP6 Models

Author(s):  
Jinling Piao ◽  
Wen Chen ◽  
Shangfeng Chen ◽  
Hainan Gong ◽  
Lin Wang

Abstract The mean states and future projections of precipitation over the monsoon transitional zone (MTZ) in China are examined based on the historical and climate change projection simulations from phase 5 and phase 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively). Ensemble means of CMIP6 models exhibit a clear improvement in capturing the annual mean and seasonal cycle of the precipitation over the MTZ, both in its spatial pattern and magnitude, compared to the counterparts of CMIP5 models. In addition, both CMIP5&6 models project a significant increase in the annual total precipitation amount and annual precipitation range, but with slightly stronger changes in CMIP6. For the climatological mean precipitation amount, the two versions’ model ensembles show high consistency in the substantial role played by local evaporation in the supply of moisture in both the present-day and future-projection scenarios, with little contribution from the horizontal and vertical advection of moisture. The precipitation amount is projected to increase in all seasons, but with the strongest signals in summer. An analysis of the moisture budget indicates that the increase in summer precipitation is mainly due to evaporation and vertical moisture advection changes in both CMIP5&6 models. However, the change in vertical moisture advection in CMIP5 is primarily attributable to the thermodynamic effects associated with the humidity changes. By contrast, the dynamic effects induced by the atmospheric circulation changes play a dominant role for CMIP6, which is likely related to the stronger warming gradient between the mid–high latitudes and the tropics.

2014 ◽  
Vol 27 (2) ◽  
pp. 493-510 ◽  
Author(s):  
Jeanne M. Thibeault ◽  
Anji Seth

Abstract Future projections of northeastern North American warm-season precipitation [June–August (JJA)] indicate substantial uncertainty. Atmospheric processes important to the northeast-region JJA precipitation are identified and a first evaluation of the ability of five phase 5 of the Coupled Model Intercomparison Project (CMIP5) models to simulate these processes is performed. In this case study, the authors develop a set of process-based analyses forming a framework for evaluating model credibility in the northeast region. This framework includes evaluation of models’ ability to simulate observed spatial patterns and amounts of mean precipitation; dynamical atmospheric circulation features, moisture transport, and moisture divergence important to interannual precipitation variability; long-term trends; and SST patterns important to northeast-region summer precipitation.Wet summers in the northeast region are associated with 1) negative 500-hPa geopotential height anomalies centered near the Great Lakes; 2) positive 500-hPa geopotential height anomalies over the western Atlantic east of the Mid-Atlantic states; 3) northeastward moisture flow and increased moisture convergence along the Eastern Seaboard; 4) increased moisture divergence off the U.S. Southeast coast; and 5) positive sea level pressure (SLP) anomalies in the western Atlantic, possibly related to cold tropical Atlantic SSTs and southwest ridging of the North Atlantic anticyclone. Models are generally able to simulate these features but vary compared to observations. Models capture regional moisture transport and convergence anomalies associated with wet summers reasonably well, despite errors in simulating the climatology. Identifying sources of intermodel differences in future projections is important, determining processes relevant for model credibility. In particular, changes in moisture divergence control the sign of northeast-region summer precipitation changes, making it a critical component of process-level analyses for the region.


2014 ◽  
Vol 7 (6) ◽  
pp. 5457-5489 ◽  
Author(s):  
J. Danzer ◽  
U. Foelsche ◽  
B. Scherllin-Pirscher ◽  
M. Schwärz

Abstract. Radio Occultation (RO) data are increasingly used in climate research. Accurate phase (change) measurements of Global Positioning System (GPS) signals are the basis for the retrieval of near vertical profiles of bending angle, microwave refractivity, density, pressure, and temperature. If temperature is calculated from observed refractivity with the assumption that water vapor is zero, the product is called "dry temperature", which is commonly used to study the Earth's atmosphere, e.g., when analyzing temperature trends due to global warming. Dry temperature is a useful quantity, since it does not need additional background information in its retrieval. However, it can only be safely used as proxy for physical temperature, where moisture is negligible. The altitude region above which water vapor does not play a dominant role anymore, depends primarily on latitude and season. In this study we first investigated the influence of water vapor on dry temperature RO profiles. Hence, we analyzed the maximum altitude down to which monthly mean dry temperature profiles can be regarded as being equivalent to physical temperature. This was done by examining dry temperature to physical temperature differences of monthly mean analysis fields from the European Centre for Medium-Range Weather Forecasts (ECMWF), studied from 2006 until 2010. We introduced cutoff criteria, where maximum temperature differences of −0.1, −0.05, and −0.02 K were allowed (dry temperature is always lower than physical temperature), and computed the corresponding altitudes. As an example, a temperature difference of −0.05 K in the tropics was found at an altitude of about 14 km, while at higher northern latitudes in winter it was found at an altitude of about 9 to 10 km, in summer at about 11 km. Furthermore, regarding climate change, we expect an increase of absolute humidity in the atmosphere. This possible trend in water vapor could yield a wrongly interpreted dry temperature trend. As a consequence, we performed a model study, investigating the increase in height of the transition region between moist and dry air. We used data from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), analyzing again monthly mean dry temperature to physical temperature differences, now from the years 2006 to 2050. We used the highest emission scenario RCP8.5 (Representative Concentration Pathway), studying all available models of the CMIP5 project, analyzing one internal run per model, with the goal to identify the altitude region where trends in dry temperature can be safely regarded as reflecting trends in physical temperature. From all models we therefore choose a selection of models ("max 8" CMIP5 models), which showed the largest trend differences. As a result, our trend study suggests that the lower boundary of the region where dry temperature is essentially equal to physical temperature rises about 150 m decade−1.


2021 ◽  
Author(s):  
Xiuqin Yang ◽  
Bin Yong ◽  
Zhiguo Yu ◽  
Yuqing Zhang

Abstract Using the precipitation measurements obtained from 2,419 ground meteorological stations over China from 1960 to 2005 as benchmark, the performance of 21 single-mode precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) were evaluated using Taylor diagrams and several statistical metrics. Based on statistical metrics, the models were ranked in terms of their ability to reproduce similar patterns in precipitation relative to the observations. Except in Southeast and Pearl river basins, research results show that all model ensemble means overestimate in the rest of the river basins, especially in Southwest and Northwest. The performance of CMIP5 models is quite different among each river basin; most models show significant overestimation in Northwest and Yellow and significant underestimations in Southeast and Pearl. The simulations are more reliable in Songhua, Liao, Yangtze, and Pearl than in other river basins according to spatial distribution and interannual variability. No individual model performs well in all the river basins both spatially and temporally. In Songhua, Liao, Yangtze, and Pearl, precipitation indices are more consistent with observations, and the spread among models is smaller. The multimodel ensemble selected from the most reasonable models indicates improved performance relative to all model ensembles.


2020 ◽  
Author(s):  
Clare Marie Flynn ◽  
Thorsten Mauritsen

Abstract. The Earth's equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient 35 climate response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has increased: 1.8–5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles, and find a systematic shift between CMIP eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models exhibit less historical warming than CMIP5 models; the evolution of the warming suggests, however, that several of the models apply too strong aerosol cooling resulting in too weak mid 20th Century warming compared to the instrumental record.


2016 ◽  
Vol 29 (9) ◽  
pp. 3317-3337 ◽  
Author(s):  
Nagio Hirota ◽  
Yukari N. Takayabu ◽  
Atsushi Hamada

Abstract Reproducibility of summer precipitation over northern Eurasia in climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is evaluated in comparison with several observational and reanalysis datasets. All CMIP5 models under- and overestimate precipitation over western and eastern Eurasia, respectively, and the reproducibility measured using the Taylor skill score is largely determined by the severity of these west–east precipitation biases. The following are the two possible causes for the precipitation biases: very little cloud cover and very strong local evaporation–precipitation coupling. The models underestimate cloud cover over Eurasia, allowing too much sunshine and leading to a warm bias at the surface. The associated cyclonic circulation biases in the lower troposphere weaken the modeled moisture transport from the Atlantic to western Eurasia and enhance the northward moisture flux along the eastern coast. Once the dry west and wet east biases appear in the models, they become amplified because of stronger evaporation–precipitation coupling. The CMIP5 models reproduce precipitation events well over a time scale of several days, including the associated low pressure systems and local convection. However, the modeled precipitation events are relatively weaker over western Eurasia and stronger over eastern Eurasia compared to the observations, and these are consistent with the biases found in the seasonal average fields.


2016 ◽  
Vol 113 (49) ◽  
pp. 13977-13982 ◽  
Author(s):  
Gerald A. Meehl ◽  
Claudia Tebaldi ◽  
Dennis Adams-Smith

Observed temperature extremes over the continental United States can be represented by the ratio of daily record high temperatures to daily record low minimum temperatures, and this ratio has increased to a value of about 2 to 1, averaged over the first decade of the 21st century, albeit with large interannual variability. Two different versions of a global coupled climate model (CCSM4), as well as 23 other coupled model intercomparison project phase 5 (CMIP5) models, show larger values of this ratio than observations, mainly as a result of greater numbers of record highs since the 1980s compared with observations. This is partly because of the “warm 1930s” in the observations, which made it more difficult to set record highs later in the century, and partly because of a trend toward less rainfall and reduced evapotranspiration in the model versions compared with observations. We compute future projections of this ratio on the basis of its estimated dependence on mean temperature increase, which we find robustly at play in both observations and simulations. The use of this relation also has the advantage of removing dependence of a projection on a specific scenario. An empirical projection of the ratio of record highs to record lows is obtained from the nonlinear relationship in observations from 1930 to 2015, thus correcting downward the likely biased future projections of the model. For example, for a 3 °C warming in US temperatures, the ratio of record highs to lows is projected to be ∼15 ± 8 compared to the present average ratio of just over 2.


2014 ◽  
Vol 27 (8) ◽  
pp. 2861-2885 ◽  
Author(s):  
Andréa S. Taschetto ◽  
Alexander Sen Gupta ◽  
Nicolas C. Jourdain ◽  
Agus Santoso ◽  
Caroline C. Ummenhofer ◽  
...  

Abstract The representation of the El Niño–Southern Oscillation (ENSO) under historical forcing and future projections is analyzed in 34 models from the Coupled Model Intercomparison Project phase 5 (CMIP5). Most models realistically simulate the observed intensity and location of maximum sea surface temperature (SST) anomalies during ENSO events. However, there exist systematic biases in the westward extent of ENSO-related SST anomalies, driven by unrealistic westward displacement and enhancement of the equatorial wind stress in the western Pacific. Almost all CMIP5 models capture the observed asymmetry in magnitude between the warm and cold events (i.e., El Niños are stronger than La Niñas) and between the two types of El Niños: that is, cold tongue (CT) El Niños are stronger than warm pool (WP) El Niños. However, most models fail to reproduce the asymmetry between the two types of La Niñas, with CT stronger than WP events, which is opposite to observations. Most models capture the observed peak in ENSO amplitude around December; however, the seasonal evolution of ENSO has a large range of behavior across the models. The CMIP5 models generally reproduce the duration of CT El Niños but have biases in the evolution of the other types of events. The evolution of WP El Niños suggests that the decay of this event occurs through heat content discharge in the models rather than the advection of SST via anomalous zonal currents, as seems to occur in observations. No consistent changes are seen across the models in the location and magnitude of maximum SST anomalies, frequency, or temporal evolution of these events in a warmer world.


2020 ◽  
Vol 20 (13) ◽  
pp. 7829-7842 ◽  
Author(s):  
Clare Marie Flynn ◽  
Thorsten Mauritsen

Abstract. The Earth's equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient climate response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has increased to 1.8–5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles and find a systematic shift between CMIP eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models exhibit less historical warming than CMIP5 models, despite an increase in TCR between CMIP eras (mean TCR increased from 1.7 to 1.9 K). The evolution of the warming suggests, however, that several of the CMIP6 models apply too strong aerosol cooling, resulting in too weak mid-20th century warming compared to the instrumental record.


2015 ◽  
Vol 28 (19) ◽  
pp. 7702-7715 ◽  
Author(s):  
Elinor R. Martin ◽  
Chris Thorncroft

Abstract African easterly waves (AEWs) can act as seed disturbances for tropical cyclones (TCs) in the Atlantic, and changes in future AEW activity may have important consequences for development of TCs. The simulation of AEWs was investigated using output from phase 5 of the Coupled Model Intercomparison Project (CMIP5) suite of experiments, including coupled historical and future simulations and atmosphere only (AMIP) simulations. Large biases exist in the simulation of low- (850 hPa) and midlevel (700 hPa) eddy kinetic energy (EKE, a proxy for AEW activity) in AMIP and historical simulations. CMIP5 models simulate excessive EKE and deficient rainfall south of 17°N. The same biases exist in historical and AMIP models and are not a consequence of errors in sea surface temperatures. The models also struggle to accurately couple AEWs and rainfall, with little improvement from CMIP3 models. CMIP5 models are unable to propagate AEWs across the coast and into the Atlantic, which is shown to be related to the resolution of the Guinea Highlands. Future projections of the annual cycle of AEW activity show a reduction in late spring and early summer and a large increase between July and October that is consistent with rainfall projections in the Sahel, but large differences exists in future projections between high- and low-resolution models. The simulation of AEWs is challenging for CMIP5 models and must be further diagnosed in order to accurately predict future TC activity and rainfall in the Sahel.


2021 ◽  
Author(s):  
Yonghe Liu ◽  
Xiyue Wang ◽  
Mingshi Wang ◽  
Hailin Wang

Abstract Fewer perfect prognosis (PP) based statistical downscaling were applied to future projections produced by global circulation models (GCM), when compared with the method of model output statistics (MOS). This study is a trial to use a multiple variable based PP downscaling for summer daily precipitation at many sites in China and to compare with the MOS. For the PP method (denoted as ‘OGB-PP’), predictors for each site are screened from surface-level variables in ERA-Interim reanalysis by an optimal grid-box method, then the biases in predictors are corrected and fitted to generalized linear models to downscale daily precipitation. The historical and the future simulations under the medium emission scenario (often represented as ‘RCP4.5’), produced by three GCMs (CanESM2, HadGEM2-ES and GFDL-ESM2G) in the coupled model intercomparison project phase five (CMIP5) were used as the downscaling bases. The bias correction based MOS downscaling (denoted as ‘BC-MOS’) were used to compare with the OGB-PP. The OGB-PP generally produced the climatological mean of summer precipitation across China, based on both ERAI and CMIP5 historical simulations. The downscaled spatial patterns of long-term changes are diverse, depending on the different GCMs, different predictor-bias corrections, and the choices on selecting PP and MOS. The annual variations downscaled by OGB-PP have small differences among the choices of different predictor-bias corrections, but have large difference to that downscaled by BC-MOS. The future changes downscaled from each GCM are sensitive to the bias corrections on predictors. The overall change patterns in some OGB-PP results on future projections produced similar trends as those projected by other multiple-model downscaling in CMIP5, while the result of the BC-MOS on the same GCMs did not, implying that PP methods may be promising. OGB-PP produced more significant increasing/decreasing trends and larger spatial variability of trends than the BC-MOS methods did. The reason maybe that in OGB-PP the independent precipitation modeling mechanism and the freely selected grid-box predictors can give rise to more diverse outputs over different sites than that from BC-MOS, which can contribute additional local variability.


Sign in / Sign up

Export Citation Format

Share Document