scholarly journals Lipids monitoring in Scenedesmus obliquus based on Terahertz Technology

2020 ◽  
Author(s):  
Yongni Shao ◽  
Weimin Gu ◽  
Yating Qiu ◽  
Shengfeng Wang ◽  
Yan Peng ◽  
...  

Abstract BackgroundMicroalgae are considered as a source of low pollution and renewable fuel due to their ability to synthesize an abundance of lipids. Conventional methods for lipid quantification are time consuming and chemically contaminated, while spectroscopic method combined with mathematical model is much more attractive due to its ability of qualitative and quantitative analysis of material composition, in this sense, terahertz technology provides not only timely and nondestructive testing without chemical pollution, but also provides information on the functional group vibration mode and structure of the measured components. Therefore,terahertz technology is utilized in our investigation and proposed for microalgae metabolism detection.ResultsThe aim of this study was to use Terahertz spectroscopy to observe lipid content in Scenedesmus obliquus (S. obliquus). We collected the THz spectra of S. obliquus which were cultivated under nitrogen stress and terahertz spectroscopy was used to analyze changes in substance components (lipids, proteins, carbohydrates and β-carotene). The PLS algorithm was used to model the terahertz data to distinguish the different lipid content of S. obliquus under nitrogen stress. The correlation coefficient of the prediction results of the lipid characteristic band modeling was above 0.991, and the root mean square error was less than 0.132. It indicated that terahertz technology can be used to discriminate S. obliquus cells under different nitrogen stress effectively. The correlation between the terahertz characteristic peak (9.3 THz) and the total lipid content determined by gravimetry reaches 0.960. The final results were compared with the commonly used spectroscopic methods for lipid observation (Raman spectroscopy). ConclusionsIn this article, we demonstrated the effectiveness of terahertz spectroscopy to monitor changes in microalgae lipid content under nitrogen stress. Terahertz spectroscopy is more suitable for industrial production or ordinary laboratories which require intermediate result with low frequency screening. When quantifying microalgae lipids, the constraint of terahertz spectroscopy is far less than that of Raman spectroscopy, and it is easier for operator to accurately quantify microalgae lipid. In addition, it is still in early stage for the study of microalgae using terahertz spectroscopy technology, there is still much potential for us to explore.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yongni Shao ◽  
Weimin Gu ◽  
Y ating Qiu ◽  
Shengfeng Wang ◽  
Yan Peng ◽  
...  

Abstract Background Microalgae are considered as a source of low pollution and renewable fuel due to their ability to synthesize an abundance of lipids. Conventional methods for lipid quantification are time-consuming and chemically contaminated, while spectroscopic method combined with mathematical model is much more attractive due to its ability of qualitative and quantitative analysis of material composition, in this sense, terahertz technology provides not only timely and non-destructive testing without chemical pollution, but also provides information on the functional group vibration mode and structure of the measured components. Therefore, terahertz technology is utilized in our investigation and proposed for microalgae metabolism detection. Results The aim of this study was to use terahertz spectroscopy to observe lipid content in Scenedesmus obliquus (S. obliquus). We collected the THz spectra of S. obliquus which were cultivated under nitrogen stress and terahertz spectroscopy was used to analyze changes in substance components (lipids, proteins, carbohydrates and β-carotene). The PLS algorithm was used to model the terahertz data to distinguish the different lipid content of S. obliquus under nitrogen stress. The correlation coefficient of the prediction results of the lipid characteristic band modeling was above 0.991, and the root mean square error was less than 0.132. It indicated that terahertz technology can be used to discriminate S. obliquus cells under different nitrogen stress effectively. The correlation between the terahertz characteristic peak (9.3 THz) and the total lipid content determined by gravimetry reaches 0.960. The final results were compared with the commonly used spectroscopic methods for lipid observation (Raman spectroscopy). Conclusions In this article, we demonstrated the effectiveness of terahertz spectroscopy to monitor changes in microalgae lipid content under nitrogen stress. Terahertz spectroscopy is more suitable for industrial production or ordinary laboratories which require intermediate result with low-frequency screening. When quantifying microalgae lipids, the constraint of terahertz spectroscopy is far less than that of Raman spectroscopy, and it is easier for operator to accurately quantify microalgae lipid. In addition, it is still in early stage for the study of microalgae using terahertz spectroscopy technology, there is still much potential for us to explore.


2020 ◽  
Author(s):  
Yongni Shao ◽  
Weimin Gu ◽  
Yating Qiu ◽  
Shengfeng Wang ◽  
Yan Peng ◽  
...  

Abstract Background Microalgae are considered as a source of low pollution and renewable fuel due to their ability to synthesize an abundance of lipids. Conventional methods for lipid quantification are time consuming and chemically contaminated. Spectroscopic method combined with mathematical model can be used for qualitative and quantitative analysis of material composition.Terahertz technology provides not only timely and nondestructive testing without chemical pollution, but also information about the functional group vibration mode and structure of the measured components. Therefore,terahertz is proposed for microalgae metabolism detection. Results The aim of this study was to use Terahertz (THz) spectroscopy to observe lipid content in Scenedesmus obliquus (S. obliquus). We collected the THz spectra of S. obliquus which were cultivated under nitrogen stress and THz spectroscopy was used to analyze changes in substance components (lipids, proteins, carbohydrates and β-carotene). Partial least square was used to establish the prediction model of each stress time point. The correlation coefficient of the prediction results of the model was above 0.991, and the root mean square error was less than 0.020. It indicated that THz technology can be used to discriminate S. obliquus cells under different nitrogen stress culture times effectively. The correlation between the THz characteristic peak (9.3 THz) and the total lipid content determined by gravimetry reaches 0.96. The final results were compared with the commonly used spectroscopic methods for lipid observation (Raman spectroscopy). Conclusions The prediction accuracy of model of THz bands is relatively high. It indicated that THz technology can be used to monitor the change of material composition in microalgae under nitrogen stress. THz is more accurate than Raman in total lipid monitoring. For the research of microalgal metabolites, compared with Raman technology, there is more research space for THz technology. THz technology can provide technical supporting for the engineering culture of oil-producing microalgae under environmental control in future.


2018 ◽  
Vol 197 ◽  
pp. 13011
Author(s):  
Istikhomah Putri Ayuwaningsih ◽  
Melati Ferianita Fachrul ◽  
Astri Rinanti

The aim of this research is to analyze the effect of urea fertilizer as a nitrogen source to lipid productivity of mixed culture of green microalgae consisting of Monoraphidium sp., Chlorella sorokiniana, and Scenedesmus obliquus as lipid sources. In research, cultures were cultivated in a 1.5 L glass photobioreactor with batch culture system. The operational conditions of this research were carried out at pH 6.0, 27 °C, aeration with air flow 150 mL/sec, and 2400 lux with vary amount of urea as a source of nitrogen as much (grams) 0.0; 0.5; 1.0. The Bligh and Dyer extraction is performed to produce biofuels after harvesting process and to analyze lipid content. Analysis of fatty acids using Gas Chromatography Mass Spectrometry (GCMS) Method, analysis of dry weight using Gravimetric Method, and analysis of cell density using Spectrofotometry Method. This research concludes that with 0.5 grams of urea fertilizer can produce dry weight and total lipid content optimally that were 0.26% (w/w) and 36,35% (w/w). This research concludes that increasing amount of nitrogen source could be increasing green microalgae biomass but is not for increased lipid content. The high lipid content can be produced by decreasing 50% nitrogen source.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zheng Ma ◽  
Na Luo ◽  
Lu Liu ◽  
Huanxian Cui ◽  
Jing Li ◽  
...  

Abstract Background A body distribution with high intramuscular fat and low abdominal fat is the ideal goal for broiler breeding. Preadipocytes with different origins have differences in terms of metabolism and gene expression. The transcriptome analysis performed in this study of intramuscular preadipocytes (DIMFPs) and adipose tissue-derived preadipocytes (DAFPs) aimed to explore the characteristics of lipid deposition in different chicken preadipocytes by dedifferentiation in vitro. Results Compared with DAFPs, the total lipid content in DIMFPs was reduced (P < 0.05). Moreover, 72 DEGs related to lipid metabolism were screened, which were involved in adipocyte differentiation, fatty acid transport and fatty acid synthesis, lipid stabilization, and lipolysis. Among the 72 DEGs, 19 DEGs were enriched in the PPAR signaling pathway, indicating its main contribution to the regulation of the difference in lipid deposition between DAFPs and DIMFPs. Among these 19 genes, the representative APOA1, ADIPOQ, FABP3, FABP4, FABP7, HMGCS2, LPL and RXRG genes were downregulated, but the ACSL1, FABP5, PCK2, PDPK1, PPARG, SCD, SCD5, and SLC27A6 genes were upregulated (P < 0.05 or P < 0.01) in the DIMFPs. In addition, the well-known pathways affecting lipid metabolism (MAPK, TGF-beta and calcium) and the pathways related to cell communication were enriched, which may also contribute to the regulation of lipid deposition. Finally, the regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs was proposed based on the above information. Conclusions Our data suggested a difference in lipid deposition between DIMFPs and DAFPs of chickens in vitro and proposed a molecular regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs. The lipid content was significantly increased in DAFPs by the direct mediation of PPAR signaling pathways. These findings provide new insights into the regulation of tissue-specific fat deposition and the optimization of body fat distribution in broilers.


2017 ◽  
Vol 31 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Kanniah Rajasekaran ◽  
Greg Ford ◽  
Kandan Sethumadhavan ◽  
Carol Carter-Wientjes ◽  
John Bland ◽  
...  

2013 ◽  
Vol 37 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Geun Ho Gim ◽  
Jung Kon Kim ◽  
Hyeon Seok Kim ◽  
Mathur Nadarajan Kathiravan ◽  
Hetong Yang ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 463 ◽  
Author(s):  
Ali Nawaz Kumbhar ◽  
Meilin He ◽  
Abdul Razzaque Rajper ◽  
Khalil Ahmed Memon ◽  
Muhammad Rizwan ◽  
...  

The decline in fossil fuel reserves has forced researchers to seek out alternatives to fossil fuels. Microalgae are considered to be a promising feedstock for sustainable biofuel production. Previous studies have shown that urea is an important nitrogen source for cell growth and the lipid production of microalgae. The present study investigated the effect of different concentrations of urea combined with kelp waste extract on the biomass and lipid content of Chlorella sorokiniana. The results revealed that the highest cell density, 20.36 × 107 cells−1, and maximal dry biomass, 1.70 g/L, were achieved in the presence of 0.5 g/L of urea combined with 8% kelp waste extract. Similarly, the maximum chlorophyll a, b and beta carotenoid were 10.36 mg/L, 7.05, and 3.01 mg/L, respectively. The highest quantity of carbohydrate content, 290.51 µg/mL, was achieved in the presence of 0.2 g/L of urea and 8% kelp waste extract. The highest fluorescence intensity, 40.05 × 107 cells−1, and maximum total lipid content (30%) were achieved in the presence of 0.1 g/L of urea and 8% kelp waste extract. The current study suggests that the combination of urea and kelp waste extract is the best strategy to enhance the biomass and lipid content in Chlorella sorokiniana.


Author(s):  
Tereza Pavlova ◽  
Zdenek Spacil ◽  
Veronika Vidova ◽  
Filip Zlamal ◽  
Eliska Cechova ◽  
...  

Objective: Lipids are secreted into milk as bilayer-coated structures: milk lipid globules (MLGs). Adipophilin (ADRP) and perilipin 3 (TIP47) are associated with MLGs in human breast milk; however, the role of these proteins in milk lipid secretion is not fully understood. The aim of the study was to investigate levels of ADRP, TIP47 and total lipid content in human breast milk, their mutual correlations and dynamics during lactation. Research Methods &amp; Procedures: Milk samples from 22 healthy lactating women (Caucasian, Central European) were collected at five time points during lactation (1&ndash;3, 12&ndash;14, 29&ndash;30, 88&ndash;90 and 178&ndash;180 days postpartum). Mass spectrometry-based method was used for quantification of ADRP and TIP47 in the samples. The gravimetric method was used to determine milk total lipid content. Results: We observed distinctive trends in ADRP, TIP47 levels and lipid content in human breast milk during the first 6 months of lactation. We also found a significant association between lipid content and ADRP, lipid content and TIP47, and ADRP and TIP47 concentrations in breast milk at all sampling points. Moreover, we derived an equation for estimating the mean lipid content of milk based on ADRP concentration in human breast milk. Conclusions: A mass spectrometry-based method was developed for quantifying ADRP and TIP47 in human breast milk. Strong mutual correlations were found between ADRP, TIP47 and total lipid content in human breast milk.


Sign in / Sign up

Export Citation Format

Share Document