Examining The Mechanical and Durability Properties of Concrete Containing Recycled Fine Aggregates Possessing Different Contamination Levels

Author(s):  
Oguzhan Yavuz Bayraktar ◽  
Gökhan Kaplan

Abstract Three types of recycled fine aggregates (RFA) possessing different contamination levels (washed – unwashed) were used in the present study. RFAs were used instead of natural fine aggregate (NFA) at the concentrations of 10%, 20%, 40%, and 80%. No significant negative characteristics were observed in green and hardened characteristics of concrete when using RFA at up to 80% concentration. However, using less-washed or unwashed RFA at 10% or 20% concentration is generally appropriate. The use of less-washed or unwashed RFAs at the concentration of 40% or more negatively affects the slump values of concrete. Especially the use of unwashed RFA at 80% concentration yielded more significant damages. The non-hydrated cement particles in the RFA show insemination or hardening acceleration behavior and affected the 7-day pressure strength of concrete at a higher level. However, together with the use of RA having a weak interface transition zone, the splitting tensile strength values of concretes more significantly decreased. In conclusion, it was determined that RFAs can be used up to 80% concentration after an appropriate washing procedure. From the aspect of costs, in order to prevent durability problems, it should not be used at any concentration higher than 20% without a washing procedure. From the aspect of protecting the sustainable environment and natural sources, it is very important to increase the use of RFAs in concrete production.

2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Mehmet Gesoglu ◽  
Erhan Güneyisi ◽  
Hatice Öznur Öz ◽  
Mehmet Taner Yasemin ◽  
Ihsan Taha

This paper addresses durability and shrinkage performance of the self-compacting concretes (SCCs) in which natural coarse aggregate (NCA) and/or natural fine aggregate (NFA) were replaced by recycled coarse aggregate (RCA) and/or recycled fine aggregate (RFA), respectively. A total of 16 SCCs were produced and classified into four series, each of which included four mixes designed with two water to binder (w/b) ratios of 0.3 and 0.43 and two silica fume replacement levels of 0 and 10%. Durability properties of SCCs were tested for rapid chloride penetration, water sorptivity, gas permeability, and water permeability at 56 days. Also, drying shrinkage accompanied by the water loss and restrained shrinkage of SCCs were monitored over 56 days of drying period. Test results revealed that incorporating recycled coarse and/or fine aggregates aggravated the durability properties of SCCs tested in this study. The drying shrinkage and restrained shrinkage cracking of recycled aggregate (RA) concretes had significantly poorer performance than natural aggregate (NA) concretes. The time of cracking greatly prolonged as the RAs were used along with the increase in water/binder ratio.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
G. Ganesh Prabhu ◽  
Jin Wook Bang ◽  
Byung Jae Lee ◽  
Jung Hwan Hyun ◽  
Yun Yong Kim

In recent years, the construction industry has been faced with a decline in the availability of natural sand due to the growth of the industry. On the other hand, the metal casting industries are being forced to find ways to safely dispose of waste foundry sand (FS). With the aim of resolving both of these issues, an investigation was carried out on the reuse of waste FS as an alternative material to natural sand in concrete production, satisfied with relevant international standards. The physical and chemical properties of the FS were addressed. The influence of FS on the behaviour of concrete was evaluated through strength and durability properties. The test results revealed that compared to the concrete mixtures with a substitution rate of 30%, the control mixture had a strength value that was only 6.3% higher, and this enhancement is not particularly high. In a similar manner, the durability properties of the concrete mixtures containing FS up to 30% were relatively close to those of control mixture. From the test results, it is suggested that FS with a substitution rate of up to 30% can be effectively used in concrete production without affecting the strength and durability properties of the concrete.


Abstract. To overcome the shortage of natural resources for the production of concrete, many waste materials are used to replace the raw materials of concrete. In this way, bottom ash is one of the major industrial wastes which shall be used as the replacement of materials in concrete production. It shall be used to replace the materials either up to one-third. This review brings out the evaluation of the industrial waste material which can be repeatedly used as a substitution for concrete as fine aggregate. This paper reviewed the use of industrial waste i.e., bottom ash as fine aggregate in the concrete. The parameters discussed were physical, chemical, fresh, and hardened properties of the concrete with partial replacement of bottom ash. By reviewing some of the research papers, concluded that 10-15% replacement of fine aggregates is acceptable for all the properties of concrete. High utilization of natural sources -gives the pathway to produce more industrial wastes which are responsible for the development of new sustainable development.


2019 ◽  
Vol 23 (1) ◽  
pp. 152-167 ◽  
Author(s):  
Danguole Bisikirske ◽  
Dagnija Blumberga ◽  
Saulius Vasarevicius ◽  
Gintautas Skripkiunas

Abstract Increasing amounts of glass waste present serious challenges in waste management to avoid environmental problems that might be created if it was to be deposited in landfills. Theoretically, glass waste is fully recyclable, but, if contaminated, containing impurities, broken or mixed colour, it makes the re-melting process impractical. A great practice of using secondary recycling material was reached by the construction industry involving glass waste in concrete mixtures as fine aggregates – reuse of waste glass in concrete production not only preserves natural resources, reduces greenhouse gas emissions, saves energy, furthermore, it may improve concrete sustainability and enhance the properties of concrete when used at the optimum quantity. In this study the container glass waste evaluation was performed, as well as experimental research of mechanical properties of four types of concrete mixtures containing glass waste as fine aggregate. The best alternative of replacement of sand by glass waste scenario in concrete production was determined, employing the multicriteria decision-making method TOPSIS.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 415
Author(s):  
Anandh S ◽  
Gunasekaran K

Concrete is the major composite material used in construction industry, it is strong in Compression and weak in tension and also has high self-weight. The light weight concrete was a alternative to conventional concrete due its low weight it decreases the self weight. Comparatively by using the light weight materials that occur either naturally or industrial waste, these material helps in reducing the cost and to improve the performance. Presently in India, more than 960 million tones of solid waste were being generated annually as by-products during industrial, agricultural mining and other processes. This paper deals with coconut shell concrete, which is one of the solid waste in the environment, and the use of this coconut shell as a replacement to coarse aggregate will reduce the weight of concrete by 25%. The other waste that was disposed mostly was sawdust. It was a byproduct of cutting or drilling of wood with saw or other tool. It is composed of fine particles of wood. It is having many advantages over traditional concrete like low bulk density, better heat preservation and heat insulation property. As said earlier to make concrete strong in tension coconut fiber is added, which is a waste material that left to disposal and as it is strong and stiff will hold the concrete material and also controls the crack. This study investigates on the use of sawdust as partial replacement for fine aggregates in concrete production. Sawdust was used to replace fine aggregates in Conventional and as well as in Coconut Shell concrete from 0%, 5%, 10% and 20%. M25 grade of concrete was selected and testing is evaluated at age of 3, 7 and 28 days. From the results, increase in percentage of saw-dust in concrete cubes led to corresponding reduction in compressive strength values, and the optimum saw-dust content was obtained at 5% in conventional as well as in coconut shell concrete , coconut fiber was added at the optimum value of sawdust on conventional and coconut shell concrete at 1%,2%,3%,4% and 5%. The better strength was obtained at 2% addition of fiber in coconut shell concrete and at 3% addition in conventional concrete. 


2019 ◽  
Vol 8 (3) ◽  
pp. 8354-8358

Self-compacting concrete is also called as self consolidated concrete which does not require vibration for placing and compaction. In the present trend scarcity of natural sand become a huge problem to construction industry, inorder to reduce this problem alternatives are used, one of the alternative material is Manufactured sand. Manufactured sand is produced from hard granite stone by crushing. There are two reasons to M-sand i.e, availability & transportation. An attempt was made to evaluate the workability and strength characteristics & durability properties of self compacting concrete with river sand and manufactured sand as fine aggregates. For each replacement level, constant workability was maintained by varying the dosage of superplasticizer. Sulphate attack and chloride attack of the specimens were determined. Different proportions of solution are used for durability study.


2014 ◽  
Vol 803 ◽  
pp. 16-20 ◽  
Author(s):  
Nur Liza Rahim ◽  
Roshazita Che Amat ◽  
Norlia Mohamad Ibrahim ◽  
Shamshinar Salehuddin ◽  
Syakirah Afiza Mohammed ◽  
...  

Glass dust waste creates chronic environmental problems, mainly due to the inconsistency of waste glass streams. Glass is widely used in our lives through manufactured products such as sheet glass, bottles, glassware, and vacuum tubing. Glass is an ideal material for recycling. The use of recycled glass helps in energy saving. The increasing awareness of glass recycling speeds up inspections on the use of waste glass with different forms in various fields. One of its significant contributions is to the construction field where the waste glass was reused for concrete production. The properties of concretes containing glass dust waste as fine aggregate were investigated in this study. Glass dust waste was used as a partial replacement for sand at 10%, 20% and 50% of concrete mixes. Compression strength for 7, 14 and 28 days concrete of age were compared with those of concrete made with natural fine aggregates. The results proved that highest strength activity given by glass dust waste after 28 days. The compressive strength of specimens with 10% glass dust waste content were 32.9373 MPa, higher than the concrete control specimen at 28 days. Using glass dust waste in concrete is an interesting possibility for economy on waste disposal sites and conservation of natural resources.


2021 ◽  
Vol 261 ◽  
pp. 02014
Author(s):  
Xinglu Cai ◽  
Ruiwen Liu ◽  
Junhao Fan ◽  
Yingdi Liao

Over-exploitation of natural river sand and waste oyster shells (WOS) dumped randomly will cause serious environmental issues. Thus, a drive to using crushed WOS as fine aggregates to substitute river sand in concrete production has been initiated. This paper conducted experimental research to study the possibility of employing the crushed WOS as 100% fine aggregates in concrete. The workability, compressive strength and its size-effect, and sustainability performance of the concrete mixtures were investigated. The results indicated that, under the same water-cement ratio, the WOS concrete showed a great improvement in strength properties while a decline was found in slump tests, compared to the control concrete. Besides, the use of the crushed WOS in concrete production resulted in a modification in both eco-efficiency and cost-efficiency.


Author(s):  
Rizwan Ahmad Khan ◽  

This paper investigates the fresh and durability properties of the high-performance concrete by replacing cement with 15% Silica fume and simultaneously replacing fine aggregates with 25%, 50%, 75% and 100% copper slag at w/b ratio of 0.23. Five mixes were analysed and compared with the standard concrete mix. Fresh properties show an increase in the slump with the increase in the quantity of copper slag to the mix. Sorptivity, chloride penetration, UPV and carbonation results were very encouraging at 50% copper slag replacement levels. Microstructure analysis of these mixes shows the emergence of C-S-H gel for nearly all mixes indicating densification of the interfacial transition zone of the concrete.


Author(s):  
Kamil Krzywiński ◽  
Łukasz Sadowski ◽  
Damian Stefaniuk ◽  
Aleksei Obrosov ◽  
Sabine Weiß

AbstractNowadays, the recycled fine aggregate sourced from construction and demolition waste is not frequently used in manufacturing of epoxy resin coatings. Therefore, the main novelty of the article is to prepare green epoxy resin coatings modified with recycled fine aggregate in a replacement ratio of natural fine aggregate ranged from 20 to 100%. The microstructural properties of the aggregates and epoxy resin were analyzed using micro-computed tomography, scanning electron microscopy and nanoindentation. The macroscopic mechanical properties were examined using pull-off strength tests. The highest improvement of the mechanical properties was observed for epoxy resin coatings modified with 20% of natural fine aggregate and 80% of recycled fine aggregate. It has been found that even 100% of natural fine aggregate can be successfully replaced using the recycled fine aggregate with consequent improvement of the pull-off strength of analyzed epoxy resin coatings. In order to confirm the assumptions resulting from the conducted research, an original analytical and numerical failure model proved the superior behavior of modified coating was developed.


Sign in / Sign up

Export Citation Format

Share Document