Downregulation of the lncRNA RP11-432I5.4 inhibits tumorigenesis in the JAK2V617F-positive classic myeloproliferative neoplasms

2020 ◽  
Author(s):  
Jie Zhou ◽  
Hao Wu ◽  
Wen-Jun Zhang ◽  
Jian-Fei Fu ◽  
Ai-Bin Liang

Abstract Background: Although aberrant expression of long non-coding RNA (lncRNA) is associated with many human cancers, little is known about its role in the JAK2V617F-positive classic myeloproliferative neoplasms (cMPNs). Methods: In this study, we performed a comprehensive analysis of lncRNAs in human cMPNs cells using a lncRNA cDNA microarray and identified the lncRNA RP11-432I5.4 acted as an effective factor in JAK2V617F-positive cMPN cells. Results: The lncRNA RP11-432I5.4 showed higher expression in cMPN patients, especially higher in JAK2V617F-positive cells compared with JAK2V617F-negative cells. Overexpression of lncRNA RP11-432I5.4 increased the proliferation of JAK2V617F-positive cells while downregulation of it decreased proliferation, promoted apoptosis and triggered S phase arrest of JAK2V617F-positive cells. Furthermore, in a mouse xenograft model, the silencing of lncRNARP11-432I5.4 repressed tumor formation in vivo. Conclusions: Taken together, these results revealed that lncRNA RP11-432I5.4 plays an important role in cMPN tumorigenesis and may be a potential novel target for treatment of JAK2V617F-positive cMPN patients.

Author(s):  
Xiuming Liu ◽  
Xiaofeng Li ◽  
Jianchang Li

AbstractRetinoblastoma is the most common malignancy in children's eyes with high incidence. Long non-coding RNAs (lncRNAs) play important roles in the progression of retinoblastoma. LncRNA FEZF1 antisense RNA 1 (FEZF1-AS1) has been found to stimulate retinoblastoma. However, the mechanism of FEZF1-AS1 underlying progression of retinoblastoma is still unclear. In current study, FEZF1-AS1 was up-regulated in retinoblastoma tissues and cells. FEZF1-AS1 overexpression enhanced retinoblastoma cell viability, promoted cell cycle, and inhibited apoptosis. Conversely, FEZF1-AS1 knockdown reduced cell viability, cycle, and elevated apoptosis. The interaction between FEZF1-AS1 and microRNA-363-3p (miR-363-3p) was confirmed. FEZF1-AS1 down-regulated miR-363-3p and up-regulated PAX6. PAX6 was a target gene of miR-363-3p. EZF1-AS1 promoted retinoblastoma cell viability and suppressed apoptosis via PAX6. Further, we demonstrated that FEZF1-AS1 contribute to tumor formation in vivo. In conclusion, FEZF1-AS1 elevated growth and inhibited apoptosis by regulating miR-363-3p/PAX6 in retinoblastoma, which provide a new target for retinoblastoma treatment.


2019 ◽  
Vol 100 (3) ◽  
pp. 400-413
Author(s):  
Milica Krstic ◽  
Haider M. Hassan ◽  
Bart Kolendowski ◽  
M. Nicole Hague ◽  
Pieter. H. Anborgh ◽  
...  

Abstract TBX3 is a member of the highly conserved family of T-box transcription factors involved in embryogenesis, organogenesis and tumor progression. While the functional role of TBX3 in tumorigenesis has been widely studied, less is known about the specific functions of the different isoforms (TBX3iso1 and TBX3iso2) which differ in their DNA-binding domain. We therefore sought to investigate the functional consequence of this highly conserved splice event as it relates to TBX3-induced tumorigenesis. By utilizing a nude mouse xenograft model, we have identified differential tumorigenic potential between TBX3 isoforms, with TBX3iso1 overexpression more commonly associated with invasive carcinoma and high tumor vascularity. Transcriptional analysis of signaling pathways altered by TBX3iso1 and TBX3iso2 overexpression revealed significant differences in angiogenesis-related genes. Importantly, osteopontin (OPN), a cancer-associated secreted phosphoprotein, was significantly up-regulated with TBX3iso1 (but not TBX3iso2) overexpression. This pattern was observed across three non/weakly-tumorigenic breast cancer cell lines (21PT, 21NT, and MCF7). Up-regulation of OPN in TBX3iso1 overexpressing cells was associated with induction of hyaluronan synthase 2 (HAS2) expression and increased retention of hyaluronan in pericellular matrices. These transcriptional changes were accompanied by the ability to induce endothelial cell vascular channel formation by conditioned media in vitro, which could be inhibited through addition of an OPN neutralizing antibody. Within the TCGA breast cancer cohort, we identified an 8.1-fold higher TBX3iso1 to TBX3iso2 transcript ratio in tumors relative to control, and this ratio was positively associated with high-tumor grade and an aggressive molecular subtype. Collectively, the described changes involving TBX3iso1-dependent promotion of angiogenesis may thus serve as an adaptive mechanism within breast cancer cells, potentially explaining differences in tumor formation rates between TBX3 isoforms in vivo. This study is the first of its kind to report significant functional differences between the two TBX3 isoforms, both in vitro and in vivo.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Yong Huang ◽  
Hui Luo ◽  
Fang Li ◽  
Yun’e Yang ◽  
Guangsheng Ou ◽  
...  

The present work aimed to probe into the effect of long non-coding RNA (lncRNA) LINC00152 on gastric cancer (GC) cells proliferation by regulating miR-193a-3p and its target gene MCL1. Transfected si-LINC00152 was used to down-regulate LINC00152, and cells proliferation was measured by the cell counting kit-8 (CCK-8) assay. Cell apoptosis and cell cycle were analyzed by flow cytometry (FCM). Besides, we also detected the potential functional effects of differential expression of LINC00152 in vivo using nude mouse xenograft model. We overexpressed and downexpressed miR-193a-3p to study the in vitro effect of miR-193a-3p on GC cells proliferation and vitality. And MCL1 was silenced by shRNA to investigate the effect of MCL1 on proliferation of GC cells. In this research, LINC00152 was proven to have a higher expression level in GC tissues than in the adjacent normal tissues. GC cells proliferation was inhibited after LINC00152 was down-regulated. LINC00152 inhibited the expression of miR-193a-3p, which negatively regulated MCL1. In addition, GC cells proliferation was inhibited by cell transfection with shRNA-MCL1, and enhanced by transfection with miR-193a-3p mimics. Our study suggested that LINC00152 was overexpressed in GC tissues, and it down-regulated miR-193a-3p to enhance MCL1 expression thereby promoting GC cells proliferation.


2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Magdalena Wiktorska ◽  
Izabela Sacewicz-Hofman ◽  
Olga Stasikowska-Kanicka ◽  
Marian Danilewicz ◽  
Jolanta Niewiarowska

Receptors of the β1 integrin family are involved in many tumor-promoting activities. There are several approaches currently used to control integrin activity, and thus to potentially restrain tumor metastasis and angiogenesis. In this study, we compared inhibitory efficiencies of siRNA and DNAzymes against the β1 integrin subunit (DEβ1), in a mouse xenograft model. Both inhibitors were used under their most favorable conditions, in terms of concentrations, incubation time and lack of cytotoxic effects. Transfection of siRNAβ1 or DEβ1 remarkably inhibited the growth of both PC3 and HT29 colon cancer cells in vitro, and decreased their capability of initiating tumor formation in the mouse xenograft model. siRNAβ1 appeared to be slightly more efficient than DEβ1 when tested in vitro, however it was comparably less proficient in blocking the tumor growth in vivo. We conclude the DNAzyme, due to its greater resistance to degradation in extra- and intracellular compartments, to be a superior inhibitor of tumor growth in long lasting experiments in vivo when compared to siRNA, while the latter seems to be more efficient in blocking β1 expression during in vitro experiments using cell cultures.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhijian Zheng ◽  
Dan Hong ◽  
Xiaodong Zhang ◽  
Yixin Chang ◽  
Ning Sun ◽  
...  

Transcribed ultraconserved regions (T-UCRs) are a new type of long non-coding RNA, and the UCR has 481 segments longer than 200 base pairs that are 100% conserved between humans, rats, and mice. T-UCRs involved in colorectal cancer (CRC) have not been studied in detail. We performed T-UCR microarray analysis and found that uc.77- was significantly downregulated in CRC tissues and cell lines. Ectopic expression of uc.77- significantly inhibited the proliferation of CRC cells in vitro and the growth of xenograft tumors in nude mice in vivo. Mechanistic studies showed that uc.77- competed with FBXW8 mRNA for binding to microRNA (miR)-4676-5p through a competing endogenous RNA mechanism and inhibited the proliferation of CRC cells by negatively regulating CDK4. The present findings highlight the role of the uc.77-/miR-4676-5p/FBXW8 axis in CRC and identify uc.77- as a potential novel target for the treatment of CRC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Aixia Hu ◽  
Fan Hong ◽  
Daohong Li ◽  
Yuwei Jin ◽  
Lingfei Kon ◽  
...  

Abstract Background As a significant cause of cancer deaths worldwide, breast cancer continues to be a troublesome malignancy. Long non-coding RNAs (lncRNAs) have been implicated in the development of breast cancer. Abnormal methylation has been associated with unfavorable breast cancer prognosis. Herein, the current study aimed to elucidate the role of lncRNA ROR in breast cancer. Methods RT-qPCR was performed to determine whether lncRNA ROR was highly expressed in breast cancer tissues, while lncRNA ROR expression was detected in both the nuclear and cytoplasm of breast cancer cells. MCF-7 cells were subsequently introduced with oe-lncRNA ROR, sh-lncRNA ROR to explore the effects of lncRNA ROR on cell proliferation, invasion and apoptosis. Results RIP, RNA pull-down and ChIP assays provided evidence suggesting that lncRNA ROR recruited transmethylase MLL1 to promote H3K4 trimethylation that enhanced TIMP3 transcription. The rescue experiments demonstrated that lncRNA ROR knockdown could inhibit the progression of breast cancer via the downregulation of TIMP3. Finally, the in vivo experiment findings consistently highlighted the suppressive effects of lncRNA ROR silencing on tumor growth. Conclusion Taken together, our study demonstrates that silencing of lncRNA ROR inhibits breast cancer progression via repression of transmethylase MLL1 and TIMP3, emphasizing the potential of lncRNA ROR as a novel target against breast cancer.


2021 ◽  
Author(s):  
Xiao-Guang Chen ◽  
Bing-Hua Dou ◽  
Jin-Dou An ◽  
Song Feng ◽  
Na Liu ◽  
...  

Abstract Background: Long non-coding RNA MAGI2 antisense RNA 3 (MAGI2-AS3) has been identified as a tumor suppressor in various cancers. Acute lymphoblastic leukemia (ALL) is a prevalent kind of leukemia among children. In this study, we aimed at evaluate the role of MAGI2-AS3 in ALL and its underlying mechanisms.Methods: qPCR was adopted to determine MAGI2-AS3, miR-452-5p, and FOXN3 expression. The malignant properties of ALL cells were assessed by CCK8 assay and flow cytometry analysis. The glucose uptake, lactate production, and ATP level were measured to evaluate glycolysis. Western blotting was performed to detect PCNA, Bcl-2, Bax, and HK2 protein levels. The interaction between MAGI2-AS3/FOXN3 and miR-452-5p was validated by luciferase reporter assay. The in vivo growth of ALL cells was determined in xenograft model.Results: MAGI2-AS3 was strikingly down-regulated in ALL samples and cells. Overexpression of MAGI2-AS3 restrained growth, glycolysis and triggered apoptosis of ALL cells. Mechanistically, MAGI2-AS3 could sponge miR-452-5p to up-regulate FOXN3. Silencing of FOXN3 abolished the anti-tumor effect of MAGI2-AS3. Finally, MAGI2-AS3 suppressed the in vivo growth of ALL cells via modulating miR-452-5p/FOXN3 axis. Conclusions: Our findings demonstrate that MAGI2-AS3 delays the progression of ALL by regulating miR-452-5p/FOXN3 signaling pathway.


2018 ◽  
Vol 49 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Xuxing Shen ◽  
Hua Bai ◽  
Huayuan Zhu ◽  
Qing Yan ◽  
Ye Yang ◽  
...  

Background/Aims: Long non-coding RNA maternally expressed gene 3 (MEG3) has been reported to play an essential role in cancer progression and metastasis. However, the overall biological role and regulatory mechanism of MEG3 in multiple myeloma (MM) development and progression remains largely ill-defined. Methods: MEG3 and miR-181a expression of MM patients were analyzed by publicly available MM data sets. Cell counting kit-8 and flow cytometry analysis were used to identify the function of MEG3 on MM in vitro. Additionally, we conducted tumor formation experiments in mice models to explain the role of MEG3 on MM in vivo. Then, several mechanism experiments, including dual-luciferase reporter assay and RNA immunoprecipitation were performed to evaluate the emulative relationship between MEG3 and miR-181a. Results: In this research, we found that MEG3 was downregulated in MM patients, which was linked with tumor progression. In addition, we demonstrated that miR-181a was overexpressed in MM patients in consistent with its cancer-promoting function. Importantly, several mechanism experiments revealed that MEG3, acting as an endogenous competitive RNA, could contend with miR-181a to inhibit tumor progression. Furthermore, as the target mRNA of miR-181a, homeobox gene A11(HOXA11) could be positively regulated by MEG3 through sponging miR-181a competitively in vitro. Conclusion: Our present work supplies the first discovery of a MEG3/miR-181a/HOXA11 regulatory network in MM and highlights that MEG3 may serve as a promising target for MM therapy in the future.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


Sign in / Sign up

Export Citation Format

Share Document