Statistical Guarantee of Timeliness in Networks of IoT Devices

Author(s):  
Antonio Franco ◽  
Bjorn Landfeldt ◽  
Ulf Körner ◽  
Christian Nyberg

Abstract The Internet of Things (IoT) paradigm, has opened up the possibility of using the ubiquity of small devices to route information without the necessity of being connected to a Wide Area Network (WAN). Use cases of IoT devices sending updates that are routed and delivered by other IoT devices have been proposed in the literature. In this paper we focus on receivers only interested in the freshest updates from the sending device. In particular, the dynamic network created by routing/gossiping through small devices creates the possibility of delivering updates out of order. Thus, the entire process can be studied well through a queueing system with infinitely many servers, all serving updates with a random service time. Age of Information (AoI) was proposed as the main metric to measure information freshness. We study the amount of time that the AoI is over a certain threshold at the receiver end as a Quality of Service (QoS) measure, called update outage probability. Particularly, given the recent interest in the literature for time domain analysis of the AoI, we obtain the exact expressions for the AoI, peak AoI (pAoI), effective service time and effective departure time distributions for an M/M/$\infty$ queuing system from a time domain perspective, and study the interdependence between the various parameters involved in order to satisfy a given statistical constraint on timeliness.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4336
Author(s):  
Nagib Matni ◽  
Jean Moraes ◽  
Helder Oliveira ◽  
Denis Rosário ◽  
Eduardo Cerqueira

Extended Range Wide Area Network (LoRaWAN) has recently gained a lot of attention from the industrial and research community for dynamic Internet of Things (IoT) applications. IoT devices broadcast messages for neighbor gateways that deliver the message to the application server through an IP network. Hence, it is required to deploy LoRaWAN gateways, i.e., network planning, and optimization, in an environment while considering Operational Expenditure (OPEX) and Capital Expenditure (CAPEX) along with Quality of Service (QoS) requirements. In this article, we introduced a LoRaWAN gateway placement model for dynamic IoT applications called DPLACE. It divides the IoT devices into groups with some degree of similarity between them to allow for the placement of LoRaWAN gateways that can serve these devices in the best possible way. Specifically, DPLACE computes the number of LoRaWAN gateways based on the Gap statistics method. Afterward, DPLACE uses K-Means and Fuzzy C-means algorithms to calculate the LoRaWAN gateway placement. The simulations’ results proved the benefits of DPLACE compared to state-of-the-art LoRaWAN gateway placement models in terms of OPEX, CAPEX, and QoS.


Author(s):  
Domenico Garlisi ◽  
Alessio Martino ◽  
Jad Zouwayhed ◽  
Reza Pourrahim ◽  
Francesca Cuomo

AbstractThe interest in the Internet of Things (IoT) is increasing both as for research and market perspectives. Worldwide, we are witnessing the deployment of several IoT networks for different applications, spanning from home automation to smart cities. The majority of these IoT deployments were quickly set up with the aim of providing connectivity without deeply engineering the infrastructure to optimize the network efficiency and scalability. The interest is now moving towards the analysis of the behavior of such systems in order to characterize and improve their functionality. In these IoT systems, many data related to device and human interactions are stored in databases, as well as IoT information related to the network level (wireless or wired) is gathered by the network operators. In this paper, we provide a systematic approach to process network data gathered from a wide area IoT wireless platform based on LoRaWAN (Long Range Wide Area Network). Our study can be used for profiling IoT devices, in order to group them according to their characteristics, as well as detecting network anomalies. Specifically, we use the k-means algorithm to group LoRaWAN packets according to their radio and network behavior. We tested our approach on a real LoRaWAN network where the entire captured traffic is stored in a proprietary database. Quite important is the fact that LoRaWAN captures, via the wireless interface, packets of multiple operators. Indeed our analysis was performed on 997, 183 packets with 2169 devices involved and only a subset of them were known by the considered operator, meaning that an operator cannot control the whole behavior of the system but on the contrary has to observe it. We were able to analyze clusters’ contents, revealing results both in line with the current network behavior and alerts on malfunctioning devices, remarking the reliability of the proposed approach.


2022 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Njabulo Sakhile Mtetwa ◽  
Paul Tarwireyi ◽  
Cecilia Nombuso Sibeko ◽  
Adnan Abu-Mahfouz ◽  
Matthew Adigun

The Internet of Things (IoT) is changing the way consumers, businesses, and governments interact with the physical and cyber worlds. More often than not, IoT devices are designed for specific functional requirements or use cases without paying too much attention to security. Consequently, attackers usually compromise IoT devices with lax security to retrieve sensitive information such as encryption keys, user passwords, and sensitive URLs. Moreover, expanding IoT use cases and the exponential growth in connected smart devices significantly widen the attack surface. Despite efforts to deal with security problems, the security of IoT devices and the privacy of the data they collect and process are still areas of concern in research. Whenever vulnerabilities are discovered, device manufacturers are expected to release patches or new firmware to fix the vulnerabilities. There is a need to prioritize firmware attacks, because they enable the most high-impact threats that go beyond what is possible with traditional attacks. In IoT, delivering and deploying new firmware securely to affected devices remains a challenge. This study aims to develop a security model that employs Blockchain and the InterPlanentary File System (IPFS) to secure firmware transmission over a low data rate, constrained Long-Range Wide Area Network (LoRaWAN). The proposed security model ensures integrity, confidentiality, availability, and authentication and focuses on resource-constrained low-powered devices. To demonstrate the utility and applicability of the proposed model, a proof of concept was implemented and evaluated using low-powered devices. The experimental results show that the proposed model is feasible for constrained and low-powered LoRaWAN devices.


Author(s):  
Olof Magnusson ◽  
Rikard Teodorsson ◽  
Joakim Wennerberg ◽  
Stig Arne Knoph

LoRaWAN (long-range wide-area network) is an emerging technology for the connection of internet of things (IoT) devices to the internet and can as such be an important part of decision support systems. In this technology, IoT devices are connected to the internet through gateways by using long-range radio signals. However, because LoRaWAN is an open network, anyone has the ability to connect an end device or set up a gateway. Thus, it is important that gateways are designed in such a way that their ability to be used maliciously is limited. This chapter covers relevant attacks against gateways and potential countermeasures against them. A number of different attacks were found in literature, including radio jamming, eavesdropping, replay attacks, and attacks against the implementation of what is called beacons in LoRaWAN. Countermeasures against these attacks are discussed, and a suggestion to improve the security of LoRaWAN is also included.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 164
Author(s):  
Mukarram A. M. Almuhaya ◽  
Waheb A. Jabbar ◽  
Noorazliza Sulaiman ◽  
Suliman Abdulmalek

Low-power wide-area network (LPWAN) technologies play a pivotal role in IoT applications, owing to their capability to meet the key IoT requirements (e.g., long range, low cost, small data volumes, massive device number, and low energy consumption). Between all obtainable LPWAN technologies, long-range wide-area network (LoRaWAN) technology has attracted much interest from both industry and academia due to networking autonomous architecture and an open standard specification. This paper presents a comparative review of five selected driving LPWAN technologies, including NB-IoT, SigFox, Telensa, Ingenu (RPMA), and LoRa/LoRaWAN. The comparison shows that LoRa/LoRaWAN and SigFox surpass other technologies in terms of device lifetime, network capacity, adaptive data rate, and cost. In contrast, NB-IoT technology excels in latency and quality of service. Furthermore, we present a technical overview of LoRa/LoRaWAN technology by considering its main features, opportunities, and open issues. We also compare the most important simulation tools for investigating and analyzing LoRa/LoRaWAN network performance that has been developed recently. Then, we introduce a comparative evaluation of LoRa simulators to highlight their features. Furthermore, we classify the recent efforts to improve LoRa/LoRaWAN performance in terms of energy consumption, pure data extraction rate, network scalability, network coverage, quality of service, and security. Finally, although we focus more on LoRa/LoRaWAN issues and solutions, we introduce guidance and directions for future research on LPWAN technologies.


2020 ◽  
Vol 6 (3) ◽  
pp. 14-19
Author(s):  
Juven Ndayikunda ◽  

Narrow Band Internet of Things (NB-IoT) is the latest cellular radio access technology that was based on LTE technology and implemented as part of the 3GPP 3GPP 3GPP for Low-power Wide-area Network (LPWAN). The paper considers the features of NB-IoT standards based on the characteristics of the physical and channel layers of NB-IoT technology based on release 14-15 of the 3GPP group. The aim of this work is also to build and study a model for serving heterogeneous traffic in an isolated cell of the LTE standard, which supports the functionality of the Internet of Things IoT (Internet of Things), in particular eMTC (enhanced Machine Type Communication). The constructed mathematical model takes into account the heterogeneity of the arrival of requests and their dependence on the number of users of cellular services. Depending on the number of sources, incoming requests are described by Poisson or Engset models. The studied model makes it possible to dynamically allocate resources that have LTE.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1007
Author(s):  
Zhuohang Zhang ◽  
Zhongming Pan

A novel reconfigurable filter antenna with three ports for three dependent switchable states for impulse radio-ultrawideband (IR-UWB)/wireless local area network (WLAN)/worldwide interoperability for microwave access (WiMAX) applications is presented in this paper. Three positive-intrinsic-negative diodes, controlled by direct current, are employed to realize frequency reconfiguration of one ultra-wideband state and two narrowband states (2.4 GHz and 3.5 GHz). The time domain characteristic of the proposed antenna in the ultra-wideband state is studied, because of the features of the IR-UWB system. The time domain analysis shows that the reconfigurable filtering antenna in the wideband state performs similarly to the original UWB antenna. The compact size, low cost, and expanded reconfigurable filtering features make it suitable for IR-UWB systems that are integrated with WLAN/WiMAX communications.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 209 ◽  
Author(s):  
Steven J. Johnston ◽  
Philip J. Basford ◽  
Florentin M. J. Bulot ◽  
Mihaela Apetroaie-Cristea ◽  
Natasha H. C. Easton ◽  
...  

Air Quality (AQ) is a very topical issue for many cities and has a direct impact on citizen health. The AQ of a large UK city is being investigated using low-cost Particulate Matter (PM) sensors, and the results obtained by these sensors have been compared with government operated AQ stations. In the first pilot deployment, six AQ Internet of Things (IoT) devices have been designed and built, each with four different low-cost PM sensors, and they have been deployed at two locations within the city. These devices are equipped with LoRaWAN wireless network transceivers to test city scale Low-Power Wide Area Network (LPWAN) coverage. The study concludes that (i) the physical device developed can operate at a city scale; (ii) some low-cost PM sensors are viable for monitoring AQ and for detecting PM trends; (iii) LoRaWAN is suitable for city scale sensor coverage where connectivity is an issue. Based on the findings from this first pilot project, a larger LoRaWAN enabled AQ sensor network is being deployed across the city of Southampton in the UK.


2008 ◽  
Vol 19 (3) ◽  
pp. 233-245 ◽  
Author(s):  
Francesco Matera ◽  
Francesca Matteotti ◽  
Paolo Pasquali ◽  
Luca Rea ◽  
Alessandro Tarantino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document