scholarly journals Effect of Grand Ethiopian Renaissance Dam on the Water Footprint of Aswan High Dam Hydropower

2020 ◽  
Author(s):  
Sherine Ahmed Elbaradei ◽  
Sarah Ehab Abdelkader

Abstract The authors have withdrawn this preprint due to author disagreement.

2020 ◽  
Author(s):  
Sherine Ahmed Elbaradei ◽  
Sarah Ehab Abdelkader

Abstract Construction of the Ethiopian Grand Renaissance dam (GRD) has many impacts and implication on the water share and future use in Egypt. Especially the period of the reservoir filling will have a great effect on the Nile River and its water in Egypt. Many of these effects of the GRD on Egypt has been studied before, but no study was done on the effect of its existence on the hydropower water footprint of the High Aswan dam. This research is concerned by simulating the effect of the different GRD reservoir filling scenarios on the water footprint of the hydropower generated from the High Aswan dam. Also, the effect on the hydropower of the Aswan dam itself is also simulated and assessed. Mathematical modeling is used to reach those goals. Three filling scenarios of the GRD were investigated: namely 3 years, 5 years, and 6 years. It was found that as the filling duration of the GRD decreases the negative effect on the hydropower water footprint increases.


2020 ◽  
Author(s):  
Jacqueline Tereza da Silva ◽  
Josefa Maria Felleger Garzillo ◽  
Fernanda Rauber ◽  
Alana Marielle Rodrigues Gald Kluczkovski ◽  
Ximena Schmidt ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 11-25
Author(s):  
Mohammad Suhail

Every commodity or goods has intake of water i.e. either in processing or furnished stage. Thus, the present study propensities macro-level (states-level) water footprint (WFP) assessment of selected eight crops namely, Wheat, Barley, Maize, Millets, Rice, Sorghum, Soybeans and Tea. The aim of present research is to assess water use in selected crops at field level. In addition, the spatial evaluation at state level also considered as one of the significant objective to understand regional disparity and/or similarly. Methodology and approach of assessment was adopted from Water Footprint Assessment Manual (2011). Data was collected from state Agricultural Directorate, National Bureau of Soil Survey and landuse, published reports and online database such as FAOSTAT, WMO, WFN, and agriculture census. Results show that green component of WFP contributes large fraction as about 72 percent, while blue and grey component amounted of about 19 and 9 percent of the total water consumption, respectively. Moreover, spatial variability of blue, green and grey among the states assimilated by soil regime and climate barriers. Supply of blue water is high where the region imparted to semi-arid or arid land. Consequently, a balanced approach between green and blue water use has been recommended in the present study to address increasing water demand in the future.


2021 ◽  
pp. 004051752110062
Author(s):  
Weiran Qian ◽  
Xiang Ji ◽  
Pinghua Xu ◽  
Laili Wang

Recycled polyester textile fibers stemming from waste polyester material have been applied in the textile industry in recent years. However, there are few studies focusing on the evaluation and comparison of the environmental impacts caused by the production of virgin polyester textiles and recycled polyester textiles. In this study, the carbon footprint and water footprint of virgin polyester textiles and recycled polyester textiles were calculated and compared. The results showed that the carbon footprint of the virgin polyester textiles production was 119.59 kgCO2/100 kg. Terephthalic acid production process occupied the largest proportion, accounting for 45.83%, followed by polyester fabric production process, ethylene production process, paraxylene production process, ethylene glycol production process and polyester fiber production process. The total carbon footprint of waste polyester recycling was 1154.15 kgCO2/100 kg, approximately ten times that of virgin polyester textiles production. As for the water footprint, it showed that virgin polyester fabric production and recycled polyester fabric production both had great impact on water eutrophication and water scarcity. Chemical oxygen demand caused the largest water eutrophication footprint, followed by ammonia-nitrogen and five-day biochemical oxygen demand. The water scarcity footprint of virgin polyester fabric production and recycled polyester fabric production was 5.98 m3 H2Oeq/100 kg and 1.90 m3 H2Oeq/100 kg, respectively. The comprehensive evaluation of carbon footprint and water footprint with the life cycle assessment polygon method indicated that the polyester fabric production process exhibited greater environmental impacts both for virgin polyester and recycled polyester.


2021 ◽  
Vol 13 (1) ◽  
pp. 409
Author(s):  
Ruogu Huang ◽  
Xiangyang Li ◽  
Yang Liu ◽  
Yaohao Tang ◽  
Jianyi Lin

Water scarcity has put pressure on city development in China. With a particular focus on urban and rural effects, logarithmic mean Divisia index decomposition (LMDI) was used to analyze the water footprint per capita (WFP) of food consumption in five East China cities (Beijing, Tianjin, Shanghai, Qingdao, and Xiamen) from 2008 to 2018. Results show that the WFP of food consumption exhibited an upward tendency among all cities during the research period. Food consumption structure contributed the most to the WFP growth, mainly due to urban and rural residents’ diet shift toward a livestock-rich style. Except in Beijing, the food consumption level mainly inhibited the WFP growth due to the decrease in food consumption level per capita in urban areas. Urbanization had less influence on WFP growth for two megacities (Beijing and Shanghai) due to the strictly controlled urban population inflow policy and more positive effects for other cities. The water footprint intensity effect among cities was mainly due to uneven water-saving efficiency. Meanwhile, Beijing and Tianjin have achieved advancement in water utilization efficiency.


2021 ◽  
Vol 173 ◽  
pp. 105709
Author(s):  
Ying Mao ◽  
Yilin Liu ◽  
La Zhuo ◽  
Wei Wang ◽  
Meng Li ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tashina Petersson ◽  
Luca Secondi ◽  
Andrea Magnani ◽  
Marta Antonelli ◽  
Katarzyna Dembska ◽  
...  

AbstractInforming and engaging citizens to adopt sustainable diets is a key strategy for reducing global environmental impacts of the agricultural and food sectors. In this respect, the first requisite to support citizens and actors of the food sector is to provide them a publicly available, reliable and ready to use synthesis of environmental pressures associated to food commodities. Here we introduce the SU-EATABLE LIFE database, a multilevel database of carbon (CF) and water (WF) footprint values of food commodities, based on a standardized methodology to extract information and assign optimal footprint values and uncertainties to food items, starting from peer-reviewed articles and grey literature. The database and its innovative methodological framework for uncertainty treatment and data quality assurance provides a solid basis for evaluating the impact of dietary shifts on global environmental policies, including climate mitigation through greenhouse gas emission reductions. The database ensures repeatability and further expansion, providing a reliable science-based tool for managers and researcher in the food sector.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 803
Author(s):  
Winnie Gerbens-Leenes ◽  
Markus Berger ◽  
John Anthony Allan

Considering that 4 billion people are living in water-stressed regions and that global water consumption is predicted to increase continuously [...]


Sign in / Sign up

Export Citation Format

Share Document