scholarly journals Age effects aggressive behavior: RNA-seq analysis in cattle with implications for studying neoteny under domestication

2020 ◽  
Author(s):  
Paulina G. Eusebi ◽  
Natalia Sevane ◽  
Thomas O’Rourke ◽  
Manuel Pizarro ◽  
Cedric Boeckx ◽  
...  

AbstractAggressiveness is one of the most basic behaviors, characterized by targeted intentional actions oriented to cause harm. The reactive type of aggression is regulated mostly by the brain’s prefrontal cortex; however, the molecular changes underlying aggressiveness in adults have not been fully characterized. Here we used an RNA-seq approach to investigate differential gene expression in the prefrontal cortex of bovines from the aggressive Lidia breed at different age stages: young three-year old and adult four-year-old bulls. A total of 50 up and 193 down-regulated genes in the adult group were identified. Furthermore, a cross-species comparative analysis retrieved 29 genes in common with previous studies on aggressive behaviors, representing an above-chance overlap with the differentially expressed genes in adult bulls.Particularly, we detected changes in the regulation of networks such as synaptogenesis, involved in maintenance and refinement of synapses, and the glutamate receptor pathway, which acts as excitatory driver in aggressive responses. Our results provide insights into candidate genes and networks involved in the molecular mechanisms leading to the maturation of the brain. The reduced reactive aggression typical of domestication has been proposed to form part of a retention of juvenile traits as adults (neoteny). The significant age-associated differential expression of genes implicated in aggressive behaviors and concomitant increase in Lidia cattle aggression validates this species as a novel model comparator to explore the impact of behavioral neoteny under domestication.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kyosuke Yamanishi ◽  
Masahiro Miyauchi ◽  
Keiichiro Mukai ◽  
Takuya Hashimoto ◽  
Noriko Uwa ◽  
...  

Interleukin-18 (IL-18) is an inflammatory cytokine that has been linked to energy homeostasis and psychiatric symptoms such as depression and cognitive impairment. We previously revealed that deficiency in IL-18 led to hippocampal abnormalities and resulted in depression-like symptoms. However, the impact of IL-18 deficiency on other brain regions remains to be clarified. In this study, we first sought to confirm that IL-18 expression in neural cells can be found in human brain tissue. Subsequently, we examined the expression of genes in the prefrontal cortex of Il18−/− mice and compared it with gene expression in mice subjected to a chronic mild stress model of depression. Extracted genes were further analyzed using Ingenuity® Pathway Analysis, in which 18 genes common to both the chronic mild stressed model and Il18−/− mice were identified. Of those, 16 were significantly differentially expressed between Il18+/+ and Il18−/− mice. We additionally measured protein expression of α-2-HS-glycoprotein (AHSG) and transthyretin (TTR) in serum and the brain. In the prefrontal cortex of Il18−/− mice, TTR but not AHSG was significantly decreased. Conversely, in the serum of Il18−/− mice, AHSG was significantly increased but not TTR. Therefore, our results suggest that in IL-18-deficit conditions, TTR in the brain is one of the mediators causally related to depression, and AHSG in peripheral organs is one of the regulators inducing energy imbalance. Moreover, this study suggests a possible “signpost” to clarify the molecular mechanisms commonly underlying the immune system, energy metabolism, neural function, and depressive disorders.


2020 ◽  
Vol 31 (11) ◽  
pp. 2543-2558 ◽  
Author(s):  
Sierra S. Marable ◽  
Eunah Chung ◽  
Joo-Seop Park

BackgroundHepatocyte NF 4α (Hnf4a) is a major regulator of renal proximal tubule (PT) development. In humans, a mutation in HNF4A impairs PT functions and is associated with Fanconi renotubular syndrome (FRTS). In mice, mosaic deletion of Hnf4a in the developing kidney reduces the population of PT cells, leading to FRTS-like symptoms. The molecular mechanisms underlying the role of Hnf4a in PT development remain unclear.MethodsThe gene deletion tool Osr2Cre removed Hnf4a in developing nephrons in mice, generating a novel model for FRTS. Immunofluorescence analysis characterized the mutant phenotype, and lineage analysis tested whether Cadherin-6 (Cdh6)–expressing cells are PT progenitors. Genome-wide mapping of Hnf4a binding sites and differential gene analysis of Hnf4a mutant kidneys identified direct target genes of Hnf4a.ResultsDeletion of Hnf4a with Osr2Cre led to the complete loss of mature PT cells, lethal to the Hnf4a mutant mice. Cdh6high, lotus tetragonolobus lectin-low (LTLlow) cells serve as PT progenitors and demonstrate higher proliferation than Cdh6low, LTLhigh differentiated PT cells. Additionally, Hnf4a is required for PT progenitors to differentiate into mature PT cells. Genomic analyses revealed that Hnf4a directly regulates the expression of genes involved in transmembrane transport and metabolism.ConclusionsHnf4a promotes the differentiation of PT progenitors into mature PT cells by regulating the expression of genes associated with reabsorption, the major function of PT cells.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Nicole M. Wanner ◽  
Mathia Colwell ◽  
Chelsea Drown ◽  
Christopher Faulk

Abstract Background Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. Results F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. Conclusions These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 920 ◽  
Author(s):  
Kang Du ◽  
Qiang Han ◽  
Ying Zhang ◽  
Xiangyang Kang

Plant polyploids tend to have large leaves, but their formation mechanism has not yet been well explained. Therefore, daily transcriptomic differences between triploids and diploids from a synthetic Populus sect. Tacamahaca three times a day (i.e., 04:00, 09:00, and 21:00) were investigated using high-throughput RNA-seq analysis. In this study, we identified several transcription factors associated with giant leaves. The combined effects included the high expression of several transcription factors (WRKY, MYB, etc.) and hormone-related genes (e.g., activates auxin, cytokine, and brassinosteroid synthesis-related genes) that accelerate the synthesis and accumulation of endogenous hormones. High levels of growth hormones were maintained by reducing the genes’ expression of hormone metabolism and degradation. The coordination of hormones accumulated sufficient materials and energy for leaf growth and development. Thereby, cell division and growth were accelerated which enhanced the photosynthesis of leaves, and the increased accumulation of photosynthetic products led to giant triploid leaves. This study lays the foundation for revealing the molecular mechanisms in the formation of giant leaves in polyploids.


Author(s):  
Jack M. Gorman

Some scientists now argue that humans are really not superior to other species, including our nearest genetic neighbors, chimpanzees and bonobos. Indeed, those animals seem capable of many things previously thought to be uniquely human, including a sense of the future, empathy, depression, and theory of mind. However, it is clear that humans alone produce speech, dominate the globe, and have several brain diseases like schizophrenia. There are three possible sources within the brain for these differences in brain function: in the structure of the brain, in genes coding for proteins in the brain, and in the level of expression of genes in the brain. There is evidence that all three are the case, giving us a place to look for the intersection of the human mind and brain: the expression of genes within neurons of the prefrontal cortex.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 169
Author(s):  
Min Xu ◽  
Can-Bin Zeng ◽  
Rui He ◽  
Zhen Yan ◽  
Zhao Qi ◽  
...  

Potassium (K+) is an abundant and important macronutrient for plants. It plays crucial roles in many growth and developmental processes, and growth is inhibited under low −K+ conditions. The molecular mechanisms operating under K+ starvation have been little reported in banana, which is a non-model plant. We conducted a transcriptome analysis of banana (Musa acuminata L. AAA group, cv. Cavendish) in response to low −K+ stress. The phenotypic traits and transcriptomic profiles of banana leaves and roots were compared between low −K+ (LK) and normal −K+ (NK) groups. The phenotypic parameters for the LK group, including fresh and dry weight, were lower than those for the NK group, which suggested that low −K+ stress may inhibit some important metabolic and biosynthetic processes. K+ content and biomass were both decreased in the LK group compared to the NK group. Following ribonucleic acid sequencing (RNA-Seq), a total of 26,796 expressed genes were detected in normal −K+ leaves (NKL), 27,014 were detected in low −K+ leaves (LKL), 29,158 were detected in normal −K+ roots (NKR), and 28,748 were detected in low −K+ roots (LKR). There were 797 up-regulated differentially expressed genes (DEGs) and 386 down-regulated DEGs in NKL versus LKL, while there were 1917 up-regulated DEGs and 2830 down-regulated DEGs in NKR versus LKR. This suggested that the roots were more sensitive to low −K+ stress than the leaves. DEGs related to K+ transport and uptake were analyzed in detail. Gene functional classification showed that the expression of genes regarding ABC transporters, protein kinases, transcription factors, and ion transporters were also detected, and may play important roles during K+ deficiency.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 681 ◽  
Author(s):  
Ivan B. Filippenkov ◽  
Vasily V. Stavchansky ◽  
Alina E. Denisova ◽  
Vadim V. Yuzhakov ◽  
Larisa E. Sevan’kaeva ◽  
...  

Cerebral ischaemia is the most common cause of impaired brain function. Biologically active peptides represent potential drugs for reducing the damage that occurs after ischaemia. The synthetic melanocortin derivative, ACTH(4-7)PGP (Semax), has been used successfully in the treatment of patients with severe impairment of cerebral blood circulation. However, its molecular mechanisms of action within the brain are not yet fully understood. Previously, we used the transient middle cerebral artery occlusion (tMCAO) model to study the damaging effects of ischaemia–reperfusion on the brain transcriptome in rats. Here, using RNA-Seq analysis, we investigated the protective properties of the Semax peptide at the transcriptome level under tMCAO conditions. We have identified 394 differentially expressed genes (DEGs) (>1.5-fold change) in the brains of rats at 24 h after tMCAO treated with Semax relative to saline. Following tMCAO, we found that Semax suppressed the expression of genes related to inflammatory processes and activated the expression of genes related to neurotransmission. In contrast, ischaemia–reperfusion alone activated the expression of inflammation-related genes and suppressed the expression of neurotransmission-related genes. Therefore, the neuroprotective action of Semax may be associated with a compensation of mRNA expression patterns that are disrupted during ischaemia–reperfusion conditions.


2020 ◽  
Author(s):  
Brenda Cabrera-Mendoza

Despite individuals with substance use disorder (SUD) have a high suicide risk, most of gene expression studies in suicide have excluded individuals with this disorder. Thus, little is known about the gene expression profile in suicides with SUD. The identification of altered biological processes in the brain of suicides with SUD is crucial in the comprehension of the SUD and suicidal behavior comorbidity. This dissertation describes the evaluation of gene expression differences in the dorsolateral prefrontal cortex of suicides and non-suicides with and without SUD.Sixty-six brain tissue samples were collected and classified in the following groups: i) 23 suicides with SUD, ii) 20 suicides without SUD, iii) 9 non-suicides with SUD and iv) 14 non-suicides without SUD. The results of this study suggest that suicides with SUD have a gene expression profile in the prefrontal cortex different from that of individuals with only one of these conditions, presenting differences in the expression of genes involved in cell proliferation and glutamatergic neurotransmission.We performed a re-analysis of the gene expression data of 38 suicides focused on dual diagnosis and suicide. Dual diagnosis is the concurrence of at least one SUD and one or more mental disorders in a given individual. Although this comorbidity is highly prevalent and is associated with adverse clinical outcomes, its neurobiology has not been elucidated. In addition, patients with dual pathology have a higher suicide risk compared to patients with only one disorder.The objective of this re-analysis was to evaluate the differences in the gene expression profile in the prefrontal cortex of suicides with dual pathology compared to suicides with a single disorder. Our results suggest an alteration in the expression of genes involved in glutamatergic neurotransmission, GABAergic neurotransmission and neurogenesis in suicides with dual diagnosis compared to suicides with a single disorder and suicides without mental comorbidities.The observed differences in gene expression in the prefrontal cortex between suicides with and without SUD, as well as suicides with dual diagnosis and a single disorder may contribute to the phenotypic and clinical discrepancies observed among these patients. The identification of molecular characteristics in the brain of individuals with suicidal behavior and psychiatric comorbidities will allow the design of preventive and therapeutic measures aimed at the adequate treatment of each comorbidity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yani Dong ◽  
Likang Lyu ◽  
Haishen Wen ◽  
Bao Shi

Long noncoding RNAs (lncRNAs) have been identified to be involved in half-smooth tongue sole (Cynoglossus semilaevis) reproduction. However, studies of their roles in reproduction have focused mainly on the ovary, and their expression patterns and potential roles in the brain and pituitary are unclear. Thus, to explore the mRNAs and lncRNAs that are closely associated with reproduction in the brain and pituitary, we collected tongue sole brain and pituitary tissues at three stages for RNA sequencing (RNA-seq), the 5,135 and 5,630 differentially expressed (DE) mRNAs and 378 and 532 DE lncRNAs were identified in the brain and pituitary, respectively. The RNA-seq results were verified by RT-qPCR. Moreover, enrichment analyses were performed to analyze the functions of DE mRNAs and lncRNAs. Interestingly, their involvement in pathways related to metabolism, signal transduction and endocrine signaling was revealed. LncRNA-target gene interaction networks were constructed based on antisense, cis and trans regulatory mechanisms. Moreover, we constructed competing endogenous RNA (ceRNA) networks. In summary, this study provides mRNA and lncRNA expression profiles in the brain and pituitary to understand the molecular mechanisms regulating tongue sole reproduction.


Author(s):  
Mohammed Isam Al-Hiyali ◽  
Asnor Juraiza Ishak ◽  
Hafiz Harun ◽  
Siti Anom Ahmad ◽  
Wan Aliaa Sulaiman

Background: This study aims to investigate the effects of visual neurofeedback stimulation on the brain activity in overweight cases. The neuroscience studies indicated the personal decision about eating under the impact of environmental factors such as (visually, smelling, tasting) is related to neural activity of the prefrontal lobe of the brain. Therefore, there were many attempts to modify the food intake behavior in overweight cases through the stimulation of the prefrontal cortex. However, the empirical viewing of EEG-neurofeedback experiments has not explicated the details about the effect of the EEG-NF, the specificity of positive treatment effects remains in a challenging scope.Methods: This study is a cue-exposure EEG-NF experiment to verify the hypothesis of effecting the EEG-NF on the electrical activity of PFC and modifying the general symptoms of food intake behavior in overweight cases. Twenty-four individuals were recruited as participants for this study. These participants were assigned randomly into two groups; the EX-Group (N=12) enrolled in 8 sessions of the EEG-NF experiment, and the C-Group (N=12) was listed in no EEG-NF sessions. The participants provided researchers with a self-report questionnaire relating to their observation of general symptoms of food intake behavior, and EEG signals recordings into the pre and posts stimulation phase. The power spectral density (PSD) method was applied for EEG parameters extraction.Results: The results of a two-way analysis of variance (ANOVA) explained that a significant variation in variables between the two groups after the EEG-NF experiment. The analysis of the quantitative variables indicated that the effect of EEG-NF experiment was a significant decrement in EEG power bands which significantly influenced changing the median of self-report questionnaire responses that is related to general symptoms of food intake behavior.Conclusions: This study provides preliminary support for the therapeutic potential of EEG-NF experiment that targets the prefrontal cortex, to influence neural processes underlying food intake behavior in overweight cases.


Sign in / Sign up

Export Citation Format

Share Document