scholarly journals Gate-Controlled Electron Quantum Interference Logic Devices

Author(s):  
Josef Weinbub ◽  
Mauro Ballicchia ◽  
Mihail Nedjalkov

Abstract Recent advances in electron quantum optics show the breathtaking progress in utilizing the electron's wave nature. Inspired by these advances, we propose a new type of electron quantum interference logic device (eQILD), where an electron wave is coherently injected into a two-dimensional (2D) wave guide and controlled via two gates. Interference effects lead to different current levels in output channels and are utilized for classical logic gates. The operating principle is shown by means of dynamic quantum Wigner and classical simulations considering coherent/ballistic transport. Contrary to other advanced information processing approaches no magnetism nor bosonic systems are required. The eQILD is inherently compatible with conventional integrated circuits and thus provides an attractive alternative towards advanced low-power information processing devices with the performance only limited by the single-electron source frequency being in the GHz regime.

2021 ◽  
Author(s):  
Josef Weinbub ◽  
Mauro Ballicchia ◽  
Mihail Nedjalkov

Abstract Inspired by using the wave nature of electrons for electron quantum optics, we propose a new type of electron quantum interference logic device (eQILD), where an electron wave is coherently injected into a two-dimensional wave guide and controlled via two gates. Interference effects lead to different current levels in output channels and are utilized for classical logic gates. eQILDs can be reconfigured and support parallelism and multi-valued logic. The operating principle as well as realizations of a logic NAND and NOR gate is shown by means of dynamic quantum Wigner and classical simulations considering coherent/ballistic transport. Contrary to other advanced information processing approaches no magnetic or photonic mechanisms are required. The eQILD is inherently compatible with conventional integrated circuits and thus provides an attractive alternative towards advanced low-power information processing devices with the performance only limited by the single-electron source frequency, i.e., in the GHz regime.


2021 ◽  
Author(s):  
Sandip Swarnakar ◽  
Siva Koti Reddy ◽  
Ramanand Harijan ◽  
Santosh Kumar

Abstract All the basic logic gates play a major role in carrying out the mathematical computation. The drawbacks of conventional electronics are alleviated by all-optical integrated circuits with a great application of high-speed computing and information processing. In this paper, plasmonic metal-insulator-metal (MIM) waveguides have an excellent property of propagating the surface plasmons beyond the diffraction limit up to deep sub-wavelength scale. All-optical NAND gate design is optimized by using MIM plasmonic waveguide-based Mach-Zehnder Interferometers (MZIs) in the footprint of 36 µm × 8 µm that works at 1.55 µm operating wavelength. The better performance of the proposed device is achieved, such as the extinction ratio is 10.55 dB, insertion loss is obtained as 0.506 dB, and response time is 262 ps. The proposed design is verified by using the finite-difference time-domain (FDTD) technique and further analysis are carried out by mathematical computation and MATLAB simulation results.


Author(s):  
Steve K. Hsiung ◽  
Kevan V. Tan ◽  
Andrew J. Komrowski ◽  
Daniel J. D. Sullivan ◽  
Jan Gaudestad

Abstract Scanning SQUID (Superconducting Quantum Interference Device) Microscopy, known as SSM, is a non-destructive technique that detects magnetic fields in Integrated Circuits (IC). The magnetic field, when converted to current density via Fast Fourier Transform (FFT), is particularly useful to detect shorts and high resistance (HR) defects. A short between two wires or layers will cause the current to diverge from the path the designer intended. An analyst can see where the current is not matching the design, thereby easily localizing the fault. Many defects occur between or under metal layers that make it impossible using visible light or infrared emission detecting equipment to locate the defect. SSM is the only tool that can detect signals from defects under metal layers, since magnetic fields are not affected by them. New analysis software makes it possible for the analyst to overlay design layouts, such as CAD Knights, directly onto the current paths found by the SSM. In this paper, we present four case studies where SSM successfully localized short faults in advanced wire-bond and flip-chip packages after other fault analysis methods failed to locate the defects.


2017 ◽  
Vol 26 (2) ◽  
pp. 027305 ◽  
Author(s):  
Sen Li ◽  
Guang-Yao Huang ◽  
Jing-Kun Guo ◽  
Ning Kang ◽  
Philippe Caroff ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Charles El Helou ◽  
Philip R. Buskohl ◽  
Christopher E. Tabor ◽  
Ryan L. Harne

AbstractIntegrated circuits utilize networked logic gates to compute Boolean logic operations that are the foundation of modern computation and electronics. With the emergence of flexible electronic materials and devices, an opportunity exists to formulate digital logic from compliant, conductive materials. Here, we introduce a general method of leveraging cellular, mechanical metamaterials composed of conductive polymers to realize all digital logic gates and gate assemblies. We establish a method for applying conductive polymer networks to metamaterial constituents and correlate mechanical buckling modes with network connectivity. With this foundation, each of the conventional logic gates is realized in an equivalent mechanical metamaterial, leading to soft, conductive matter that thinks about applied mechanical stress. These findings may advance the growing fields of soft robotics and smart mechanical matter, and may be leveraged across length scales and physics.


1989 ◽  
Vol 62 (2) ◽  
pp. 195-198 ◽  
Author(s):  
Norman O. Birge ◽  
Brage Golding ◽  
W. H. Haemmerle

2013 ◽  
Vol 26 (3) ◽  
pp. 227-238
Author(s):  
Thomas Windbacher ◽  
Hiwa Mahmoudi ◽  
Alexander Makarov ◽  
Viktor Sverdlov ◽  
Siegfried Selberherr

We summarize our recent work on a non-volatile logic building block required for energy-efficient information processing systems. A sequential logic device, in particular, an alternative non-volatile magnetic flip-flop has been introduced. Its properties are investigated and its extension to a very dense shift register is demonstrated. We show that the flip-flop structure inherently exhibits oscillations and discuss its spin torque nano-oscillator properties.


2021 ◽  
Author(s):  
Amr Hassan ◽  
Nihal F. F. Areed ◽  
Salah S. A. Obayya ◽  
Hamdi El Mikati

Abstract The paper presents a different type of designing methods and operational improvements of the optical logic memory SR-flip flop (SR-FF). The proposed optical memory SR-FF is based on two optical NOR logic gates which use two-dimension (2D) photonic crystal (PhC) with a square lattice of silicon (Si) dielectric rods. The structure has a switching time in only a few Picoseconds with little power input and very little power loss. The proposed optical memory SR-FF has a small dimension 38x22 μm2 which makes it one of the best optimized and most practical structures to be used in all photonic integrated circuits (PICs). The ultra-compact size enables the possibility of multiple devices to be embedded in a single PIC chip.


Sign in / Sign up

Export Citation Format

Share Document