scholarly journals Climate change impacts on rainfed maize yields in Zambia under conventional and optimized crop management

Author(s):  
Siatwiinda Mabele Siatwiinda ◽  
Iwan Supit ◽  
Bert van Hove ◽  
Olusegun Yerokun ◽  
Gerard H. Ros ◽  
...  

Abstract Maize production in Zambia is characterized by significant yield gaps attributed to nutrient management and climate change threatens to widen these gaps unless agronomic management is optimized. Insights in the impacts of climate change on maize yields and the potential to mitigate negative impacts by crop management is currently lacking for Zambia. Using five Global Circulation models and the WOFOST crop model, we assessed expected climate change and the impacts on maize yields at a 0.5° × 0.5° spatial resolution for RCP 4.5 and RCP 8.5 scenarios. Impacts were assessed for two future periods (i.e. near future: 2035–2066 and far future: 2065–2096) in comparison with a reference period (1971–2001). The average surface temperature and summer days (above 30°C) are projected to increase strongly in the southern and western regions. Precipitation is expected to decline, except in the northern regions while the number of wet days decline everywhere, indicating a shortening growing season. The risk of crop failure in western and southern regions increases due to dry spells and heat stress while crops in the northern regions will be threatened by flooding or waterlogging due to heavy precipitation. The simulated decline in the water limited and water- and nutrient- limited maize yields varied from ca 15–20% in the near future and from ca 20–40% in the far future, mainly due to the expected temperature increases. Optimizing management by adjusting planting dates and maize varieties can counteract these impacts by 6–29%. Quantitatively, the existing gaps between water limited yields and nutrient limited maize yields are substantially larger than the expected yield decline due to climate change. Improved nutrient management is therefore crucial to avoid crop yield decline and might even increase crop yields in Zambia.

2021 ◽  
Vol 167 (3-4) ◽  
Author(s):  
Siatwiinda M. Siatwiinda ◽  
Iwan Supit ◽  
Bert van Hove ◽  
Olusegun Yerokun ◽  
Gerard H. Ros ◽  
...  

AbstractMaize production in Zambia is characterized by significant yield gaps attributed to nutrient management and climate change threatens to widen these gaps unless agronomic management is optimized. Insights in the impacts of climate change on maize yields and the potential to mitigate negative impacts by crop management are currently lacking for Zambia. Using five Global Circulation models and the WOFOST crop model, we assessed climate change impacts on maize yields at a 0.5° × 0.5° spatial resolution for RCP 4.5 and RCP 8.5 scenarios. Impacts were assessed for the near future (2035-2066) and far future (2065-2096) in comparison with a reference period (1971-2001). The surface temperature and warm days (above 30 °C) are projected to increase strongly in the southern and western regions. Precipitation is expected to decline, except in the northern regions, whereas the number of wet days declines everywhere, shortening the growing season. The risk of crop failure in western and southern regions increases due to dry spells and heat stress, while crops in the northern regions will be threatened by flooding or waterlogging due to heavy precipitation. The simulated decline in the water-limited and water- and nutrient-limited maize yields varied from 15 to 20% in the near future and from 20 to 40% in the far future, mainly due to the expected temperature increases. Optimizing management by adjusting planting dates and maize variety selection can counteract these impacts by 6-29%. The existing gaps between water-limited and nutrient-limited maize yields are substantially larger than the expected yield decline due to climate change. Improved nutrient management is therefore crucial to boost maize production in Zambia.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 665
Author(s):  
Chanchai Petpongpan ◽  
Chaiwat Ekkawatpanit ◽  
Supattra Visessri ◽  
Duangrudee Kositgittiwong

Due to a continuous increase in global temperature, the climate has been changing without sign of alleviation. An increase in the air temperature has caused changes in the hydrologic cycle, which have been followed by several emergencies of natural extreme events around the world. Thailand is one of the countries that has incurred a huge loss in assets and lives from the extreme flood and drought events, especially in the northern part. Therefore, the purpose of this study was to assess the hydrological regime in the Yom and Nan River basins, affected by climate change as well as the possibility of extreme floods and droughts. The hydrological processes of the study areas were generated via the physically-based hydrological model, namely the Soil and Water Assessment Tool (SWAT) model. The projected climate conditions were dependent on the outputs of the Global Climate Models (GCMs) as the Representative Concentration Pathways (RCPs) 2.6 and 8.5 between 2021 and 2095. Results show that the average air temperature, annual rainfall, and annual runoff will be significantly increased in the intermediate future (2046–2070) onwards, especially under RCP 8.5. According to the Flow Duration Curve and return period of peak discharge, there are fluctuating trends in the occurrence of extreme floods and drought events under RCP 2.6 from the future (2021–2045) to the far future (2071–2095). However, under RCP 8.5, the extreme flood and drought events seem to be more severe. The probability of extreme flood remains constant from the reference period to the near future, then rises dramatically in the intermediate and the far future. The intensity of extreme droughts will be increased in the near future and decreased in the intermediate future due to high annual rainfall, then tending to have an upward trend in the far future.


2018 ◽  
Vol 3 (4) ◽  
pp. 117 ◽  
Author(s):  
Guo-Jing Yang ◽  
Robert Bergquist

Based on an ensemble of global circulation models (GCMs), four representative concentration pathways (RCPs) and several ongoing and planned Coupled Model Intercomparison Projects (CMIPs), the Intergovernmental Panel on Climate Change (IPCC) predicts that global, average temperatures will increase by at least 1.5 °C in the near future and more by the end of the century if greenhouse gases (GHGs) emissions are not genuinely tempered. While the RCPs are indicative of various amounts of GHGs in the atmosphere the CMIPs are designed to improve the workings of the GCMs. We chose RCP4.5 which represented a medium GHG emission increase and CMIP5, the most recently completed CMIP phase. Combining this meteorological model with a biological counterpart model accounted for replication and survival of the snail intermediate host as well as maturation of the parasite stage inside the snail at different ambient temperatures. The potential geographical distribution of the three main schistosome species: Schistosoma japonicum, S. mansoni and S. haematobium was investigated with reference to their different transmission capabilities at the monthly mean temperature, the maximum temperature of the warmest month(s) and the minimum temperature of the coldest month(s). The set of six maps representing the predicted situations in 2021–2050 and 2071–2100 for each species mainly showed increased transmission areas for all three species but they also left room for potential shrinkages in certain areas.


2016 ◽  
Vol 23 (2) ◽  
pp. 159
Author(s):  
Candradijaya A

Despite the well-documented model-simulated adverse climate change impact on rice yields reported elsewhere, interventions to address the issue seem to be still limited, particularly at local level. This links to the uncertainty that entails to climate projection and its likely future impact, which varies across regions and climate models. The study analyzes climate change-induced rice yield reduction and the adequacy of current adaptations, to cope with a large range of impact under various climate models. Seventeen General Circulation Models (GCMs) under Representative Concentration Pathways (RCPs) climate change with scenarios of RCP8.5 and RCP4.5, combined with CROPWAT model for near-future (2011-2040) and far-future (2041-2070) projections. The study was conducted in November-December 2013, in Ujungjaya Subdistrict, the District of Sumedang. The output confirms yield reduction to occur in the near-future, to the extent variable across the GCMs. At the highest estimation, rice yield decreases by 32.00% and 31.81%, in comparison to baseline, for near-future under RCP8.5 and RCP4.5, respectively. The reduction extends, with a slightly higher degree, to the far-future. The reduction is sensitive to variation in farming practices of the local farmers, in particular that in planting time and irrigation scheduling. The shifting of planting time to better match rainfall pattern reduces the rice yield by 12.95% for rainfed and 14.07% for the irrigated farming. Meanwhile, improved irrigation scheduling reduces the yield reduction by 16.16%. The findings provide valuable inputs for relevant authorities to understand the climate change-induced rice yield reduction, and to formalate intervention strategies for spesific-location adaptation.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1025 ◽  
Author(s):  
Maryam Beheshti ◽  
Ali Heidari ◽  
Bahram Saghafian

Climate change can cause serious problems for future hydropower plant projects and make them less economically justified. Changing precipitation patterns, rising temperatures, and abrupt snow melting affect river stream patterns and hydropower generation. Thus, study of climate change impacts during the useful life of a hydropower dam is essential and its outcome should be considered in assessing long-term dam feasibility. The aim of this research is to evaluate the impacts of climate change on future hydropower generation in the Karun-III dam located in the southwest region of Iran in two future tri-decadal periods: near (2020–2049) and far (2070–2099). Had-CM3 general circulation model predictions under A2 and B2 SRES scenarios were applied, and downscaled by a statistical downscaling model (SDSM). An artificial neural network (ANN) and HEC-ResSim reservoir model respectively simulated the rainfall–runoff process and hydropower generation. The projections showed that the Karun-III dam catchment under the two scenarios will generally become warmer and wetter with a slightly larger increase in annual precipitation in the near than the far future. Runoff followed the precipitation trend by increasing in both periods. The runoff peak also switched from April to March in both scenarios, due to higher winter precipitation, and earlier snowmelt, which was caused by temperature rise. According to both scenarios, hydropower generation increased more in the near future than in the far future. Annual average power generation increased gradually by 26.7–40.5% under A2 and by 17.4–29.3% under B2 in 2020–2049. In the far period, average power generation increased by 1.8–8.7% in A2 and by 10.5–22% under B2. In the near future, A2 showed energy deduction in the months of June and July, while B2 revealed a decrease in the months of April and June. Additionally, projections in the 2070–2099 under A2 exhibited energy reduction in the months of March through July, while B2 revealed a decrease in April through July. The framework utilized in this study can be exploited to analyze the susceptibility of hydropower production in the long term.


2016 ◽  
Vol 154 (7) ◽  
pp. 1153-1170 ◽  
Author(s):  
E. EBRAHIMI ◽  
A. M. MANSCHADI ◽  
R. W. NEUGSCHWANDTNER ◽  
J EITZINGER ◽  
S. THALER ◽  
...  

SUMMARYClimate change is expected to affect optimum agricultural management practices for autumn-sown wheat, especially those related to sowing date and nitrogen (N) fertilization. To assess the direction and quantity of these changes for an important production region in eastern Austria, the agricultural production systems simulator was parameterized, evaluated and subsequently used to predict yield production and grain protein content under current and future conditions. Besides a baseline climate (BL, 1981–2010), climate change scenarios for the period 2035–65 were derived from three Global Circulation Models (GCMs), namely CGMR, IPCM4 and MPEH5, with two emission scenarios, A1B and B1. Crop management scenarios included a combination of three sowing dates (20 September, 20 October, 20 November) with four N fertilizer application rates (60, 120, 160, 200 kg/ha). Each management scenario was run for 100 years of stochastically generated daily weather data. The model satisfactorily simulated productivity as well as water and N use of autumn- and spring-sown wheat crops grown under different N supply levels in the 2010/11 and 2011/12 experimental seasons. Simulated wheat yields under climate change scenarios varied substantially among the three GCMs. While wheat yields for the CGMR model increased slightly above the BL scenario, under IPCM4 projections they were reduced by 29 and 32% with low or high emissions, respectively. Wheat protein appears to increase with highest increments in the climate scenarios causing the largest reductions in grain yield (IPCM4 and MPEH-A1B). Under future climatic conditions, maximum wheat yields were predicted for early sowing (September 20) with 160 kg N/ha applied at earlier dates than the current practice.


Author(s):  
Adrian Barker ◽  
Andrew Pitman ◽  
Jason P. Evans ◽  
Frank Spaninks ◽  
Luther Uthayakumaran

Abstract We examine the relative impact of population increases and climate change in affecting future water demand for Sydney, Australia. We use the Weather and Research Forecasting model, a water demand model and a stochastic weather generator to downscale four different global climate models for the present (1990–2010), near (2020–2040) and far (2060–2080) future. Projected climate change would increase median metered consumption, at 2019/2020 population levels, from around 484 GL under present climate to 484–494 GL under near future climate and 495–505 GL under far future climate. Population changes from 2014/2015 to 2024/2025 have a far larger impact, increasing median metered consumption from 457 to 508 GL under the present climate, 463 to 515 GL under near future climate and from 471 to 524 GL under far future climate. The projected changes in consumption are sensitive to the climate model used. Overall, while population growth is a far stronger driver of increasing water demand than climate change for Sydney, both act in parallel to reduce the time it would take for all storage to be exhausted. Failing to account for climate change would therefore lead to overconfidence in the reliability of Sydney's water supply.


2021 ◽  
Vol 25 (9) ◽  
pp. 5065-5081
Author(s):  
Nariman Mahmoodi ◽  
Jens Kiesel ◽  
Paul D. Wagner ◽  
Nicola Fohrer

Abstract. Understanding current and possible future alterations of water resources under climate change and increased water demand allows for better water and environmental management decisions in arid regions. This study aims at analyzing the impact of groundwater demand and climate change on groundwater sustainability and hydrologic regime alterations in a wadi system in central Iran. A hydrologic model is used to assess streamflow and groundwater recharge of the Halilrood Basin on a daily time step under five different scenarios over the baseline period (1979–2009) and for two future scenario periods (near future: 2030–2059 and far future: 2070–2099). The Indicators of Hydrologic Alteration (IHA) with a set of 32 parameters are used in conjunction with the Range of Variability Approach (RVA) to evaluate hydrologic regime change in the river. The results show that groundwater recharge is expected to decrease and is not able to fulfill the increasing water demand in the far future scenario. The Halilrood River will undergo low and moderate streamflow alteration under both stressors during the near future as RVA alteration is classified as “high” for only three indicators, whereas stronger alteration is expected in the far future, with 11 indicators in the high range. Absolute changes in hydrologic indicators are stronger when both climate change and groundwater demand are considered in the far future simulations, since 27 indicators show significant changes, and the RVA shows high and moderate levels of changes for 18 indicators. Considering the evaluated RVA changes, future impacts on the freshwater ecosystems in the Halilrood Basin will be severe. The developed approach can be transferred to other wadi regions for a spatially distributed assessment of water resources sustainability.


2021 ◽  
Author(s):  
Valeriy Osypov ◽  
Natalia Osadcha ◽  
Volodimir Osadchyi ◽  
Oleh Speka

<p>A river basin management plan has to consider climate change impact because global warming influences the water cycle explicitly. For Ukraine, only continental-scale studies or(and) global hydrological models reflect the climate change impact on water resources. Such resolution is insufficient to develop confident adaptation strategies.</p><p>This study aims to assess changes in the river runoff, water flow formation, and soil water of the Desna river basin under future climate. The Desna supply Kyiv, Ukraine’s capital, with fresh water. Moreover, soil water capacity across the basin is critical for crop production, the leading sector of the region.</p><p>The framework consists of the process-based ecohydrological SWAT (Soil and Water Assessment Tool) model and eight high-resolution (~12 km) regional climate models from the EURO-CORDEX project forced by RCP4.5 and RCP8.5 scenarios till the end of the XXI century. The SWAT model was successfully calibrated on water discharge from 12 gauges across the basin, then it was driven by each climate model to achieve a range of possible future scenarios. This approach better represents the hydrological processes and achieves more confident results than in previous studies.</p><p>Seven of eight models project warmer and wetter climate in the near future (2021-2050), and all models project the same in the far future (2071-2100). According to the ensemble mean, the air temperature will increase by 1.1°C under RCP4.5 and 1.2°C under RCP8.5 in the near future, and by 2.2°C under RCP4.5 and 4.2°C under RCP8.5 in the far future. Precipitation surplus will reach 5% (range from -6% to 16%) under RCP4.5 and RCP8.5 in the near future, and 8% (from 2% to 17%) under RCP4.5 and 14% (from 3% to 23%) under RCP8.5 in the far future. The discharge will likely increase (mean signal 6-8% in the near future and 10-14% in the far future) mostly due to higher groundwater inflow.</p><p>Intra-annual changes could be very unfavorable for plant growth because of lower soil water content and higher temperature stress during the vegetation period. The models agree about precipitation surplus during the cold period but, in summer, all directions of change are almost equally possible.</p><p>We consider that, among other vulnerabilities of the Desna basin, the water stress for crops will be the main issue because of the high dependence of the economy on crop production. Attention should also be paid to forest fires, eutrophication, and the concentration of organic substances in the stream</p>


Sign in / Sign up

Export Citation Format

Share Document