scholarly journals Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system

2021 ◽  
Vol 25 (9) ◽  
pp. 5065-5081
Author(s):  
Nariman Mahmoodi ◽  
Jens Kiesel ◽  
Paul D. Wagner ◽  
Nicola Fohrer

Abstract. Understanding current and possible future alterations of water resources under climate change and increased water demand allows for better water and environmental management decisions in arid regions. This study aims at analyzing the impact of groundwater demand and climate change on groundwater sustainability and hydrologic regime alterations in a wadi system in central Iran. A hydrologic model is used to assess streamflow and groundwater recharge of the Halilrood Basin on a daily time step under five different scenarios over the baseline period (1979–2009) and for two future scenario periods (near future: 2030–2059 and far future: 2070–2099). The Indicators of Hydrologic Alteration (IHA) with a set of 32 parameters are used in conjunction with the Range of Variability Approach (RVA) to evaluate hydrologic regime change in the river. The results show that groundwater recharge is expected to decrease and is not able to fulfill the increasing water demand in the far future scenario. The Halilrood River will undergo low and moderate streamflow alteration under both stressors during the near future as RVA alteration is classified as “high” for only three indicators, whereas stronger alteration is expected in the far future, with 11 indicators in the high range. Absolute changes in hydrologic indicators are stronger when both climate change and groundwater demand are considered in the far future simulations, since 27 indicators show significant changes, and the RVA shows high and moderate levels of changes for 18 indicators. Considering the evaluated RVA changes, future impacts on the freshwater ecosystems in the Halilrood Basin will be severe. The developed approach can be transferred to other wadi regions for a spatially distributed assessment of water resources sustainability.

2021 ◽  
Author(s):  
Nariman Mahmoodi ◽  
Jens Kiesel ◽  
Paul D. Wagner ◽  
Nicola Fohrer

Abstract. Understanding current and possible future alterations of water resources under climate change and increased water withdrawal allows for better water and environmental management decisions in arid regions. This study aims at analyzing the impact of groundwater withdrawals and climate change on groundwater sustainability and hydrologic regime alterations in a Wadi system in central Iran. A hydrologic model is used to assess streamflow and groundwater recharge of the Halilrood Basin on a daily time step under different scenarios over a model setup period (1979–2009) and for two future scenario periods (near future: 2030–2059 and far future: 2070–2099). The Indicators of Hydrologic Alteration (IHA) with a set of 32 parameters are used in conjunction with the Range of Variability Approach (RVA) to evaluate hydrologic regime change in the river. The results show that groundwater recharge is expected to decrease, and is not able to fulfil the increasing water demand in the far future scenario. The Halilrood River will undergo low and moderate flow alteration under both stressors during the near future as RVA alteration is classified as high for only three indicators, while in the far future, 11 indicators lie in high range. Absolute changes in hydrologic indicators are stronger when both climate change and withdrawals are considered in the far future simulations, since 27 indicators show significant changes and RVA show high and moderate level of changes for 18 indicators. Considering the evaluated RVA changes, future impacts on the freshwater ecosystems in the Halilrood Basin will be severe. The developed approach can be transferred to other Wadi regions for a spatially-distributed assessment of water resources sustainability.


Author(s):  
Adrian Barker ◽  
Andrew Pitman ◽  
Jason P. Evans ◽  
Frank Spaninks ◽  
Luther Uthayakumaran

Abstract We examine the relative impact of population increases and climate change in affecting future water demand for Sydney, Australia. We use the Weather and Research Forecasting model, a water demand model and a stochastic weather generator to downscale four different global climate models for the present (1990–2010), near (2020–2040) and far (2060–2080) future. Projected climate change would increase median metered consumption, at 2019/2020 population levels, from around 484 GL under present climate to 484–494 GL under near future climate and 495–505 GL under far future climate. Population changes from 2014/2015 to 2024/2025 have a far larger impact, increasing median metered consumption from 457 to 508 GL under the present climate, 463 to 515 GL under near future climate and from 471 to 524 GL under far future climate. The projected changes in consumption are sensitive to the climate model used. Overall, while population growth is a far stronger driver of increasing water demand than climate change for Sydney, both act in parallel to reduce the time it would take for all storage to be exhausted. Failing to account for climate change would therefore lead to overconfidence in the reliability of Sydney's water supply.


2021 ◽  
Author(s):  
Valeriy Osypov ◽  
Natalia Osadcha ◽  
Volodimir Osadchyi ◽  
Oleh Speka

<p>A river basin management plan has to consider climate change impact because global warming influences the water cycle explicitly. For Ukraine, only continental-scale studies or(and) global hydrological models reflect the climate change impact on water resources. Such resolution is insufficient to develop confident adaptation strategies.</p><p>This study aims to assess changes in the river runoff, water flow formation, and soil water of the Desna river basin under future climate. The Desna supply Kyiv, Ukraine’s capital, with fresh water. Moreover, soil water capacity across the basin is critical for crop production, the leading sector of the region.</p><p>The framework consists of the process-based ecohydrological SWAT (Soil and Water Assessment Tool) model and eight high-resolution (~12 km) regional climate models from the EURO-CORDEX project forced by RCP4.5 and RCP8.5 scenarios till the end of the XXI century. The SWAT model was successfully calibrated on water discharge from 12 gauges across the basin, then it was driven by each climate model to achieve a range of possible future scenarios. This approach better represents the hydrological processes and achieves more confident results than in previous studies.</p><p>Seven of eight models project warmer and wetter climate in the near future (2021-2050), and all models project the same in the far future (2071-2100). According to the ensemble mean, the air temperature will increase by 1.1°C under RCP4.5 and 1.2°C under RCP8.5 in the near future, and by 2.2°C under RCP4.5 and 4.2°C under RCP8.5 in the far future. Precipitation surplus will reach 5% (range from -6% to 16%) under RCP4.5 and RCP8.5 in the near future, and 8% (from 2% to 17%) under RCP4.5 and 14% (from 3% to 23%) under RCP8.5 in the far future. The discharge will likely increase (mean signal 6-8% in the near future and 10-14% in the far future) mostly due to higher groundwater inflow.</p><p>Intra-annual changes could be very unfavorable for plant growth because of lower soil water content and higher temperature stress during the vegetation period. The models agree about precipitation surplus during the cold period but, in summer, all directions of change are almost equally possible.</p><p>We consider that, among other vulnerabilities of the Desna basin, the water stress for crops will be the main issue because of the high dependence of the economy on crop production. Attention should also be paid to forest fires, eutrophication, and the concentration of organic substances in the stream</p>


2021 ◽  
Author(s):  
Nariman Mahmoodi ◽  
Jens Kiesel ◽  
Paul Wagner ◽  
Nicola Fohrer

<p>Most Wadi systems of the world are threatened by climate change and unsustainable consumption through different water use systems (WUS) which can result in an alteration of the hydrologic regime, a deterioration of water resources, and their valuable ecosystems. The objective of this study is to assess the impact of climate change and growing water demand on the alteration of the Halilrood River’s flow regime and the associated impacts on the ecosystem of the Jazmorian wetland in central Iran. The Soil and Water Assessment Tool (SWAT) model is used to simulate the flow regime of the near and far future (2030-2059 and 2070-2099). Based on 32 Indicators of Hydrologic Alteration (IHA) in conjunction with the Range of Variability Approach (RVA) alterations in the flow regime are evaluated. Impacts of three scenarios for future water use (No-, Constant-, and Projected-WUS) are assessed. No-WUS assumes pristine conditions in the future when no water use system are included in the model (no demand) and we only account for the impact of climate change; Constant-WUS assumes unaltered groundwater demand in the future; and Projected-WUS corresponds to the increases in the number of water use systems in the future (increasing demand). Flow regime alteration assessment indicates that climate change will severely affect the magnitude of monthly and annual extreme flows, frequency and duration of high and low Pulses in the Halilrood Basin, especially in the far future. The comparison of model simulations under different scenarios shows that the impact of climate change was more intense when growing water demand in the future is taken into account. The result of the RVA test indicates moderate and high level of changes for 18 indicators, thus likely affecting the environmental flows required for the health of the downstream wetland.</p>


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 665
Author(s):  
Chanchai Petpongpan ◽  
Chaiwat Ekkawatpanit ◽  
Supattra Visessri ◽  
Duangrudee Kositgittiwong

Due to a continuous increase in global temperature, the climate has been changing without sign of alleviation. An increase in the air temperature has caused changes in the hydrologic cycle, which have been followed by several emergencies of natural extreme events around the world. Thailand is one of the countries that has incurred a huge loss in assets and lives from the extreme flood and drought events, especially in the northern part. Therefore, the purpose of this study was to assess the hydrological regime in the Yom and Nan River basins, affected by climate change as well as the possibility of extreme floods and droughts. The hydrological processes of the study areas were generated via the physically-based hydrological model, namely the Soil and Water Assessment Tool (SWAT) model. The projected climate conditions were dependent on the outputs of the Global Climate Models (GCMs) as the Representative Concentration Pathways (RCPs) 2.6 and 8.5 between 2021 and 2095. Results show that the average air temperature, annual rainfall, and annual runoff will be significantly increased in the intermediate future (2046–2070) onwards, especially under RCP 8.5. According to the Flow Duration Curve and return period of peak discharge, there are fluctuating trends in the occurrence of extreme floods and drought events under RCP 2.6 from the future (2021–2045) to the far future (2071–2095). However, under RCP 8.5, the extreme flood and drought events seem to be more severe. The probability of extreme flood remains constant from the reference period to the near future, then rises dramatically in the intermediate and the far future. The intensity of extreme droughts will be increased in the near future and decreased in the intermediate future due to high annual rainfall, then tending to have an upward trend in the far future.


2016 ◽  
Vol 23 (2) ◽  
pp. 159
Author(s):  
Candradijaya A

Despite the well-documented model-simulated adverse climate change impact on rice yields reported elsewhere, interventions to address the issue seem to be still limited, particularly at local level. This links to the uncertainty that entails to climate projection and its likely future impact, which varies across regions and climate models. The study analyzes climate change-induced rice yield reduction and the adequacy of current adaptations, to cope with a large range of impact under various climate models. Seventeen General Circulation Models (GCMs) under Representative Concentration Pathways (RCPs) climate change with scenarios of RCP8.5 and RCP4.5, combined with CROPWAT model for near-future (2011-2040) and far-future (2041-2070) projections. The study was conducted in November-December 2013, in Ujungjaya Subdistrict, the District of Sumedang. The output confirms yield reduction to occur in the near-future, to the extent variable across the GCMs. At the highest estimation, rice yield decreases by 32.00% and 31.81%, in comparison to baseline, for near-future under RCP8.5 and RCP4.5, respectively. The reduction extends, with a slightly higher degree, to the far-future. The reduction is sensitive to variation in farming practices of the local farmers, in particular that in planting time and irrigation scheduling. The shifting of planting time to better match rainfall pattern reduces the rice yield by 12.95% for rainfed and 14.07% for the irrigated farming. Meanwhile, improved irrigation scheduling reduces the yield reduction by 16.16%. The findings provide valuable inputs for relevant authorities to understand the climate change-induced rice yield reduction, and to formalate intervention strategies for spesific-location adaptation.


2021 ◽  
Author(s):  
Yvan Caballero ◽  
Sandra Lanini ◽  
Pierre Le Cointe ◽  
Stéphanie Pinson ◽  
Guillaume Hevin ◽  
...  

<p>Climate change is expected to have a significant impact on water resources in mountain areas, as it is the case of the Pyrenees range between France, Spain and Andorre. Independently of future changes on rainfall patterns, global temperature rise is likely to provoke larger and earlier snowmelt, and enhanced precipitation deficits during the dry summer season. Exploring the impacts of this future situation on groundwater is essential, as this resource is often important for drinking water, irrigation and breeding uses in mountain regions. However, studies on groundwater recharge in the context of climate change are relatively scarce, as compared to studies focusing on surface water resources.</p><p>We assessed potential groundwater recharge (part of effective precipitation that infiltrates and potentially reach the aquifers) over the Pyrenean range in the framework of the PIRAGUA project, a collaborative multi-national effort funded by the EU’s Interreg POCTEFA program. Based on a gridded (5x5 km²) meteorological dataset derived from observational data by the CLIMPY project, we estimated effective precipitation for each grid cell using a conceptual water balance scheme. The effect of the seasonal change of land cover / land use (based on the Corine Land Cover dataset) on the water budget model has been assessed, and showed the need to include this component for a more accurate simulation. Based on a spatial characterization of the land infiltration capacity, the potential groundwater recharge has been computed for homogeneous groundwater bodies. Results have been compared to the outputs of groundwater models applied on selected karstic catchments using the BALAN code, and to a general knowledge of groundwater recharge rates for different regions within the study zone. Finally, climate change impacts on future IDPR have been explored using scenarios provided by the CLIMPY project.</p><p>The Pyrenees range is a hot-spot for water resources with a tremendous impact over a much broader region in SW Europe, as Pyrenean rivers are fundamental contributors to large systems such as those of the Adour and Garonne (France) or Ebro (Spain), as well as smaller systems in the western and eastern sectors such as the Bidasoa (Spanish Basque Country), Llobregat-Ter-Muga (Catalonia), or Têt-Tech-Aude (France). Our results are relevant for the planning and management of water resources for this important transboundary region in the future, as changes in groundwater recharge will also affect water resources availability.</p><p>Acknowledgments: the project PIRAGUA, is funded by the European Regional Development Fund (ERDF) through the Interreg V-A Spain France Andorra programme (POCTEFA 2014-2020).</p>


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1025 ◽  
Author(s):  
Maryam Beheshti ◽  
Ali Heidari ◽  
Bahram Saghafian

Climate change can cause serious problems for future hydropower plant projects and make them less economically justified. Changing precipitation patterns, rising temperatures, and abrupt snow melting affect river stream patterns and hydropower generation. Thus, study of climate change impacts during the useful life of a hydropower dam is essential and its outcome should be considered in assessing long-term dam feasibility. The aim of this research is to evaluate the impacts of climate change on future hydropower generation in the Karun-III dam located in the southwest region of Iran in two future tri-decadal periods: near (2020–2049) and far (2070–2099). Had-CM3 general circulation model predictions under A2 and B2 SRES scenarios were applied, and downscaled by a statistical downscaling model (SDSM). An artificial neural network (ANN) and HEC-ResSim reservoir model respectively simulated the rainfall–runoff process and hydropower generation. The projections showed that the Karun-III dam catchment under the two scenarios will generally become warmer and wetter with a slightly larger increase in annual precipitation in the near than the far future. Runoff followed the precipitation trend by increasing in both periods. The runoff peak also switched from April to March in both scenarios, due to higher winter precipitation, and earlier snowmelt, which was caused by temperature rise. According to both scenarios, hydropower generation increased more in the near future than in the far future. Annual average power generation increased gradually by 26.7–40.5% under A2 and by 17.4–29.3% under B2 in 2020–2049. In the far period, average power generation increased by 1.8–8.7% in A2 and by 10.5–22% under B2. In the near future, A2 showed energy deduction in the months of June and July, while B2 revealed a decrease in the months of April and June. Additionally, projections in the 2070–2099 under A2 exhibited energy reduction in the months of March through July, while B2 revealed a decrease in April through July. The framework utilized in this study can be exploited to analyze the susceptibility of hydropower production in the long term.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1790 ◽  
Author(s):  
Muhammad Afzal ◽  
Ragab Ragab

Although the climate change projections are produced by global models, studying the impact of climatic change on water resources is commonly investigated at catchment scale where the measurements are taken, and water management decisions are made. For this study, the Frome catchment in the UK was investigated as an example of midland England. The DiCaSM model was applied using the UKCP09 future climate change scenarios. The climate projections indicate that the greatest decrease in groundwater recharge and streamflow was projected under high emission scenarios in the 2080s. Under the medium and high emission scenarios, model results revealed that the frequency and severity of drought events would be the highest. The drought indices, the Reconnaissance Drought Index, RDI, Soil Moisture Deficit, SMD and Wetness Index, WI, predicted an increase in the severity of future drought events under the high emission scenarios. Increasing broadleaf forest area would decrease streamflow and groundwater recharge. Urban expansion could increase surface runoff. Decreasing winter barley and grass and increasing oil seed rape, would increase SMD and slightly decrease river flow. Findings of this study are helpful in the planning and management of the water resources considering the impact of climate and land use changes on variability in the availability of surface and groundwater resources.


Sign in / Sign up

Export Citation Format

Share Document