scholarly journals The Novel Role of LINC01235 in Metastasis of Gastric Cancer Cells by Inducing Epithelial-mesenchymal Transition

2020 ◽  
Author(s):  
Cheng Zhang ◽  
Yu Liang ◽  
Chun-Dong Zhang ◽  
Dong-Qiu Dai

Abstract BackgroundLncRNAs play a vital role in the tumorigenesis of gastric cancer (GC). The present study aims to explore the role of LINC01235 in clinical significance, prognostic prediction and GC metastasis.MethodsWe identified differentially expressed lncRNAs using stomach adenocarcinoma RNA-Seq data from The Cancer Genome Atlas (TCGA). The expression of LINC01235 in GC cell lines and tissues were confirmed by qRT-PCR assay. The overall survival analysis and univariate/ multivariate Cox regression analysis were performed to explore the prognostic value of LINC01235. In vitro assays were utilized to assess the effect of LINC01235 in cell migration and invasion. Western blotting measured the expression of EMT-induced proteins.ResultsThis study determined that LINC01235 expression has a higher fold changes by analyzing TCGA RNA-Seq data. qRT-PCR assay confirmed that LINC01235 is significantly over-expressed in GC cells and tissues. Additionally, the overall survival analysis showed that patients with a higher LINC01235 expression had a poorer prognosis than those with a lower LINC01235 expression. Univariate Cox regression analysis indicated that high LINC01235 expression is positively correlated with poor prognosis. Moreover, LINC01235 was an independent poor prognostic marker for GC in multivariate Cox analysis. In vitro assays suggested that LINC01235 knockdown suppresses GC cell migration and invasion. GSEA revealed that high LINC01235 expression is strongly enriched in EMT pathway. Western blotting results revealed that LINC01235 silencing decreases the expression of EMT-induced proteins.ConclusionLINC01235 could promote GC cell metastasis via EMT and function as a prognostic biomarker.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haibo Yao ◽  
Qinshu Shao ◽  
Yanfei Shao

Objective. To explore the relationship between CTCFL and DPPA2 and validate the positive role of CTCFL/DPPA2 in cell malignant behaviors in gastric cancer. Methods. We predicted gastric cancer-related transcription factors and corresponding target mRNAs through bioinformatics. Levels of CTCFL and DPPA2 were assessed via qRT-PCR and western blot. In vitro experiments were utilized to assay the cell biological behaviors. CHIP was utilized for the assessment of the targeted relationship between CTCFL and DPPA2. Results. CTCFL and DPPA2 were both highly expressed in gastric cancer cells, and high CTCFLL and DPPA2 could promote cell malignant behaviors. CHIP validated that DPPA2 was a target of CTCFL. In addition, high DPPA2 rescued the repressive impact of CTCFL silencing on the cell proliferation, migration, and invasion in gastric cancer. Conclusion. The transcription factor CTCFL fosters cell proliferative, migratory, and invasive properties via activating DPPA2 in gastric cancer.


2020 ◽  
Author(s):  
Hui Li ◽  
Shufen Zhao ◽  
Liwei Shen ◽  
Peige Wang ◽  
Shihai Liu ◽  
...  

Abstract Background: E2F2 is a member of the E2F family of transcription factors with important yet incompletely understood biological functions in cancer. In some cancer types, controversial tumor-promoting and tumor-suppressive roles of E2F2 have been reported. However, the biological role of E2F2 in gastric cancer (GC) remains to be determined. Methods: We analyzed E2F2 expression via multiple gene expression databases. The prognostic value of the E2F2 was determined by Kaplan-Meier Plotter and Cox regression. The correlations between E2F2 and cancer immune infiltrates were investigated via Tumor Immune Estimation Resource (TIMER). The functions and pathways of E2F2 and its 50 frequently changed genes closely associated with the family members were analyzed using Database for Annotation, Visualization, and Integrated Discovery (DAVID) software. We used immunohistochemistry (IHC), quantitative real-time PCR (qPCR) and western blot to verify the expression level of E2F2 in GC and further studied the effects of E2F2 on PI3K/Akt/mTOR activity; GC cell autophagy, migration, and invasion through wound healing assays, transwell assays, Western blotting, and transmission electron microscopy.Results: We observed that compared with normal gastric tissues/cells, E2F2 is highly expressed in gastric cancer tissues and cells in both the public datasets and in our experimental verification. High E2F2 expression was associated with poorer overall survival (OS). Moreover, E2F2 expression showed strong correlations with diverse immune marker sets in GC. Moreover, E2F2 overexpression promoted GC cell migration and invasion in vitro by inactivating PI3K/Akt/mTOR-mediated autophagy. Conversely, E2F2 inhibition suppressed GC cell migration and invasion in vitro by activating PI3K/Akt/mTOR-mediated autophagy.Conclusions: In conclusion, this study provides multi-level evidence for the importance of E2F2 in gastric carcinogenesis and its potential as a biomarker in GC. We demonstrated that E2F2 is overexpressed in GC and that high E2F2 expression is associated with aggressive tumor features and poorer patient prognosis. Further, our results suggest a potential novel immune regulatory role of E2F2 in tumor immunity. Functionally, we discovered a new role of E2F2 in regulating PI3K/Akt/mTOR-mediated autophagy and the downstream processes of cell migration and invasion. Our results could potentially reveal new targets and strategies for GC diagnosis and treatment.


2018 ◽  
Vol 105 (1) ◽  
pp. 63-75
Author(s):  
Jae Chang Lee ◽  
Sung Ae Koh ◽  
Kyung Hee Lee ◽  
Jae-Ryong Kim

Introduction: Bcl2-associated athanogene 3 (BAG3) is elevated in several types of cancers. However, the role of BAG3 in progression of gastric cancer is unknown. Therefore, the present study aims to find out the role of BAG3 in hepatocyte growth factor (HGF)–mediated tumor progression and the molecular mechanisms by which HGF regulates BAG3 expression. Methods: BAG3 mRNA and protein were measured using reverse transcription polymerase chain reaction and Western blot in the 2 human gastric cancer cell lines, NUGC3 and MKN28, treated with or without HGF. The effects of BAG3 knockdown on cell proliferation, cell invasion, and apoptosis were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the in vitro 2-chamber invasion assay, and flow cytometry in BAG3 short hairpin RNA (shRNA)–transfected cells and control cells. The signaling pathways involved in BAG3 that are regulated by HGF were analyzed. The chromatin immunoprecipitation assay was used to determine binding of Egr1 to the BAG3 promoter. Results: BAG3 mRNA and protein levels were increased following treatment with HGF. HGF-mediated BAG3 upregulation increased cell proliferation and cell invasion; however, it decreased apoptosis. HGF-mediated BAG3 upregulation is regulated by an ERK and Egr1-dependent pathway. BAG3 may have an important role in HGF-mediated cell proliferation and metastasis in gastric cancer through an ERK and Egr1-dependent pathway. Conclusion: This pathway may provide novel therapeutic targets and provide information for further identification of other targets of therapeutic significance in gastric cancer.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


2021 ◽  
Author(s):  
Shuang Liu ◽  
Zheng Lin ◽  
Jianwen Wang ◽  
Zerong Zheng ◽  
Wenqing Rao ◽  
...  

Abstract Background: To explore the miR-4787-3p expression levels in the serum exosome and tissue and its role in lymph node metastasis and prognosis in ESCC. Methods: The miRNA array was conducted to detect the ESCC serum exosomal miRNAs expression. A receiver operating characteristic (ROC) curve was constructed to determine the predictive ESCC with lymph node metastasis efficacy of serum exosomal miR-4784-3p. The Cox regression analysis was preformed to explore prognostic factors for ESCC. Transwell assay and CCK-8 assays were utilized to evaluate cell migration, invasion, and proliferation, respectively. Results: High serum exosomal miR-4787-3p expression was demonstrated in lymph node metastasis group (P =0.011). The serum exosomal miR-4787-3p expression was significantly associated with histologic grade (P = 0.010), and TNM stage (P = 0.033). However, there was no significant relationship between tissue miR-4787-3p expression and clinical characteristics (P >0.05). ROC analyses revealed that the AUCs of serum exosomal miR-4787-3p for lymph node metastasis prediction was 0.787. The Cox regression analysis found that high expression serum exosomal miR-4787-3p were correlated with poor prognoses (for OS, HR=2.68, 95% CI: 1.02~7.04; for DFS, HR = 2.65, 95% CI: 1.05~6.68). Nevertheless, no association between tissue miR-4787-3p expression and ESCC prognosis. In addition, upregulated expression of miR-4787-3p could promote migration and invasion in vitro. Conclusions: Serum exosomal miR-4787-3p can be promising biomarkers for ESCC metastasis and prognosis


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Xin Shi ◽  
Xingfa Guan

Abstract Background Osteosarcoma (OS) is a malignancy predominantly occurred in children and adolescents. Numerous microRNAs are involved in the pathogenesis of various cancers. This study aimed to investigate the expression profiles of miR-99b and its prognostic value in OS patients, and further analyze the biological function of miR-99b in the tumor progression by using OS cells. Methods Expression of miR-99b was measured using quantitative real-time PCR. Kaplan-Meier survival curves and Cox regression analysis were performed to evaluate the prognostic value of miR-99b. OS cell lines were used to investigate the effects of miR-99b on cell proliferation, migration and invasion. Results A significant decreased expression of miR-99b was observed in the OS tissues and cell lines respectively compared with the normal tissues and cells. Aberrant expression of miR-99b was associated with the patients’ metastasis and TNM stage, and could be used to predict the prognosis of OS. The expression of miR-99b was regulated in vitro by cell transfection, and we found that the overexpression of miR-99b led to suppressed cell proliferation, migration and invasion, whereas the knockdown of miR-99b resulted in the opposite results. Conclusions In one word, the aberrantly expressed miR-99b serves a prognostic biomarker for OS patients. OS cell proliferation, migration and invasion can be inhibited by the overexpression of miR-99b, suggesting that the methods to increase miR-99b expression may be novel therapeutic strategies in OS.


2019 ◽  
Vol 26 (7) ◽  
pp. 643-658 ◽  
Author(s):  
Meng Ji ◽  
Yanli Yao ◽  
Anan Liu ◽  
Ligang Shi ◽  
Danlei Chen ◽  
...  

Pancreatic neuroendocrine neoplasms (pNENs) are endocrine tumors arising in pancreas and is the most common neuroendocrine tumors. Mounting evidence indicates lncRNA H19 could be a determinant of tumor progression. However, the expression and mechanism of H19 and the relevant genes mediated by H19 in pNENs remain undefined. Microarray analysis was conducted to identify the differentially expressed lncRNAs in pNENs. H19 expression was analyzed in 39 paired pNEN tissues by qPCR. The biological role of H19 was determined by functional experiments. RNA pulldown, mass spectroscopy and RNA immunoprecipitation were performed to confirm the interaction between H19 and VGF. RNA-seq assays were performed after knockdown H19 or VGF. H19 was significantly upregulated in pNEN tissues with malignant behaviors, and the upregulation predicted poor prognosis in pNENs. In vitro and in vivo data showed that H19 overexpression promoted tumor growth and metastasis, whereas H19 knockdown led to the opposite phenotypes. H19 interacted with VGF, which was significantly upregulated in pNENs, and higher VGF expression was markedly related to poor differentiation and advanced stage. Furthermore, VGF was downregulated when H19 was knocked down, and VGF promoted cell proliferation, migration and invasion. Mechanistic investigations revealed that H19 activated PI3K/AKT/CREB signaling and promoted pNEN progression by interacting with VGF. These findings indicate that H19 is a promising prognostic factor in pNENs with malignant behaviors and functions as an oncogene via the VGF-mediated PI3K/AKT/CREB pathway. In addition, our study implies that VGF may also serve as a candidate prognostic biomarker and therapeutic target in pNENs.


Author(s):  
Zhengdong Deng ◽  
Xiangyu Li ◽  
Yuanxin Shi ◽  
Yun Lu ◽  
Wei Yao ◽  
...  

Autophagy is an important bioprocess throughout the occurrence and development of cancer. However, the role of autophagy-related lncRNAs in pancreatic cancer (PC) remains obscure. In the study, we identified the autophagy-related lncRNAs (ARlncRNAs) and divided the PC patients from The Cancer Genome Atlas into training and validation set. Firstly, we constructed a signature in the training set by the least absolute shrinkage and selection operator penalized cox regression analysis and the multivariate cox regression analysis. Then, we validated the independent prognostic role of the risk signature in both training and validation set with survival analysis, receiver operating characteristic analysis, and Cox regression. The nomogram was established to demonstrate the predictive power of the signature. Moreover, high risk scores were significantly correlated to worse outcomes and severe clinical characteristics. The Pearson’s analysis between risk scores with immune cells infiltration, tumor mutation burden, and the expression level of chemotherapy target molecules indicated that the signature could predict efficacy of immunotherapy and targeted therapy. Next, we constructed an lncRNA–miRNA–mRNA regulatory network and identified several potential small molecule drugs in the Connectivity Map (CMap). What’s more, quantitative real-time PCR (qRT-PCR) analysis showed that serum LINC01559 could serve as a diagnostic biomarker. In vitro analysis showed inhibition of LINC01559 suppressed PC cell proliferation, migration, and invasion. Additionally, silencing LINC01559 suppressed gemcitabine-induced autophagy and promoted the sensitivity of PC cells to gemcitabine. In conclusion, we identified a novel ARlncRNAs signature with valuable clinical utility for reliable prognostic prediction and personalized treatment of PC patients. And inhibition of LINC01559 might be a novel strategy to overcome chemoresistance.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Jie Zhang ◽  
Wei-qing Qiu ◽  
Hongyi Zhu ◽  
Hua Liu ◽  
Jian-hua Sun ◽  
...  

Abstract Gastric cancer (GC) is one of the most leading malignancies. Long noncoding RNA is related to GC. In this study, 11 miRNAs in the exosomes and six lncRNAs in the tissues was examined by qRT-PCR. Correlation analysis was used to analyze the relationship between miRNAs in exosome and lncRNAs in the tissues. Four miRNAs level in GC tissues were examined by qRT-PCR. MTT was used to determine cell viability. Flow cytometry was used to quantify the apoptotic cells. Transwell assay was used to examine the migration and invasion capacity. Dual-luciferase assay was used to examine the interaction between HOTAIR and miR-30a or -b. Capillary formation was used to determine the capillary formation capacity. Weak negative correlations were found between HOTAIR and miR-30a or -b in GC tissue samples. Interestingly, strong negative correlations were identified between the HOTAIR level in GC tissue samples and the miR-30a or -b levels in plasma exosomes. HOTAIR knockdown GC cells exhibited decreased migration, invasion, proliferation, and upregulated apoptosis, which released more miR-30a and -b into the exosomes. KRAS was upregulated when co-cultured with exosomes from HOTAIR overexpressed cells, and promoted GC cells proliferation, migration, and invasion. Meanwhile, HUVEC cells expressed increased VEGF-A and formatted more capillaries. Subsequently, we identified a 10mer target site of miR-30a or -b in HOTAIR sequence, and the overexpression of HOTAIR induced the degradation of miR-30a or -b, indicating a ceRNA role of HOTAIR. We report the negative correlation between the plasma miRNAs level and GC tissue HOTAIR expression for the first time and unveiled the ceRNA role of HOTAIR in GC. HOTAIR functions as an onco-lncRNA regulating the level of miR-30a and -b in both GC cells and exosomes. These findings may give insight into understanding the mechanism of GC pathogenesis and provide new biomarkers for clinical diagnosis.


Sign in / Sign up

Export Citation Format

Share Document