Topographic control of forest species distributions in the Interior West USA

2020 ◽  
Author(s):  
Matt Bekker ◽  
R Justin DeRose

Abstract Background The geographic distribution of forest and woodland ecosystems in the Interior West United States is strongly influenced by topographic gradients that, in part, control moisture availability through their effect on insolation, and precipitation capture and retention. Through an empirical approach, we use unique, plot-level data from the Forest Inventory and Analysis Program ( n = 13,437) over eight ecoregions within eight Interior West states to characterize the distribution of the 12 most abundant tree species with respect to the effects of elevation, slope aspect, and slope steepness. Results Across species, elevation, and aspect, most plots occurred on gentle slopes and the number decreased with increasing slope. Species-specific differences to microenvironmental conditions were evident in the variation between observed (plots containing a subject tree) and expected (all forest plots from the systematic sample) numbers of plots across the gradient combinations. Species groups, broadly defined as woodland, montane, and subalpine, generally exhibited similar responses and revealed more generality than hypothesized. Only Douglas-fir, white fir, subalpine fir, and Engelmann spruce exhibited significant patterns of affinity for particular aspects—most often on north and least often on south—with the relative importance of south aspects decreasing with increasing elevation. Limber pine showed unique, unimodal patterns of affinity for moderately steep slopes, with no consistent patterns by aspect or elevation. Although not significant, at high elevations woodland species exhibited a tendency to occur more often on south aspects on gentle to intermediate slopes, and less often on north aspects. Conclusions Unique microenvironments created by interactions between aspect, slope, and elevation create some predictability in patterns of geographic distribution. However, the general lack of species-specific response suggests that patterns of occurrence in relation to physiographic gradients is much broader than in common generalizations.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1399
Author(s):  
Stefania Toscano ◽  
Antonio Ferrante ◽  
Ferdinando Branca ◽  
Daniela Romano

Natural biostimulants obtained by plants are intensively used nowadays to improve crop yield and quality. The current study aimed to evaluate the effects of leaf extract of moringa (Moringa oleifera Lam.) (MLE) in modifying baby leaf characteristics of two genotypes of Brassica. The trial was started in October 2020 in a greenhouse; a cultivar of kale ‘Cavolo Laciniato Nero di Toscana’ (CL) and a Sicilian landrace of sprouting broccoli ‘Broccoli Nero’ (BN) were used. The plants, after 15, 30 and 40 days from sowing, were treated with MLE, while the control plants (C) with distilled water. Treatment with MLE modified morphological and nutritional value, but with different behavior in the two genotypes. In fact, in BN the treatment reduced the antioxidant activity (2.2-diphenyl-1-picrylhydrazyl (DPPH)) by 54%, while in CL the treatment increased this parameter by 40%. For the phenolic concentration and the sugar content the values recorded were significantly increased by MLE compared to control plants in CL, where in BN a significant reduction was registered. The CL plants treated with MLE showed a significant reduction (−70%) in nitrate content compared to the control plants; a negative effect was, instead, observed in BN, where the plants treated with moringa showed an increase of 60%. Results of this study showed how the foliar application of MLE was effective in improving various nutraceutical parameters, in particular in kale, because it appears to be a species-specific response.


2021 ◽  
Vol 9 (4) ◽  
pp. 818
Author(s):  
Miloš Barták ◽  
Josef Hájek ◽  
Alla Orekhova ◽  
Johana Villagra ◽  
Catalina Marín ◽  
...  

Five macrolichens of different thallus morphology from Antarctica (King George Island) were used for this ecophysiological study. The effect of thallus desiccation on primary photosynthetic processes was examined. We investigated the lichens’ responses to the relative water content (RWC) in their thalli during the transition from a wet (RWC of 100%) to a dry state (RWC of 0%). The slow Kautsky kinetics of chlorophyll fluorescence (ChlF) that was recorded during controlled dehydration (RWC decreased from 100 to 0%) and supplemented with a quenching analysis revealed a polyphasic species-specific response of variable fluorescence. The changes in ChlF at a steady state (Fs), potential and effective quantum yields of photosystem II (FV/FM, ΦPSII), and nonphotochemical quenching (NPQ) reflected a desiccation-induced inhibition of the photosynthetic processes. The dehydration-dependent fall in FV/FM and ΦPSII was species-specific, starting at an RWC range of 22–32%. The critical RWC for ΦPSII was below 5%. The changes indicated the involvement of protective mechanisms in the chloroplastic apparatus of lichen photobionts at RWCs of below 20%. In both the wet and dry states, the spectral reflectance curves (SRC) (wavelength 400–800 nm) and indices (NDVI, PRI) of the studied lichen species were measured. Black Himantormia lugubris showed no difference in the SRCs between wet and dry state. Other lichens showed a higher reflectance in the dry state compared to the wet state. The lichen morphology and anatomy data, together with the ChlF and spectral reflectance data, are discussed in relation to its potential for ecophysiological studies in Antarctic lichens.


2021 ◽  
Vol 288 (1965) ◽  
Author(s):  
Leila Chapron ◽  
Pierre E. Galand ◽  
Audrey M. Pruski ◽  
Erwan Peru ◽  
Gilles Vétion ◽  
...  

Cold-water corals are threatened by global warming, especially in the Mediterranean Sea where they live close to their upper known thermal limit (i.e. 13°C), yet their response to rising temperatures is not well known. Here, temperature effects on Lophelia pertusa and Madrepora oculata holobionts (i.e. the host and its associated microbiome) were investigated. We found that at warmer seawater temperature (+2°C), L. pertusa showed a modification of its microbiome prior to a change in behaviour, leading to lower energy reserves and skeletal growth, whereas M. oculata was more resilient. At extreme temperature (+4°C), both species quickly lost their specific bacterial signature followed by lower physiological activity prior to death. In addition, our results showing the holobionts' negative response to colder temperatures (−3°C), suggest that Mediterranean corals live close to their thermal optimum. The species-specific response to temperature change highlights that global warming may affect dramatically the main deep-sea reef-builders, which would alter the associated biodiversity and related ecosystem services.


2021 ◽  
pp. 1-13
Author(s):  
Heitor Felippe Uller ◽  
Laio Zimermann Oliveira ◽  
Aline Renata Klitzke ◽  
Joberto Veloso de Freitas ◽  
Alexander Christian Vibrans

Allometric models embedding independent variables such as diameter at breast height (d) and total height (h) are useful tools to predict the biomass of individual trees. Models for tropical forests are often constructed based on datasets composed of species with different morphological features and architectural models. It is reasonable to expect, however, that species-specific models may reduce uncertainties in biomass predictions, especially for palms, tree ferns, and trees with peculiar morphological features, such as stilt roots and hollow trunks. In this sense, three species with wide geographical distribution in the Brazilian Atlantic Forest were sampled, namely Euterpe edulis Mart., Cyathea delgadii Sternb., and Cecropia glaziovii Snethl., with the aim to (i) quantify their aboveground biomass (AGB), (ii) evaluate the AGB distribution in different plant compartments, (iii) fit species-specific models for predicting AGB at the individual level, and (iv) assess the performance of specific and generic models available in the literature to predict the AGB of individuals of these species. The compartment stem represented, on average, ∼74% of the total AGB of E. edulis individuals; in turn, the caudex compartment of C. delgadii represented, on average, ∼87% of the total AGB, while the trunk compartment of C. glaziovii represented, on average, ∼74%. Among the fitted models, the power model [Formula: see text] showed the best performance for E. edulis and C. delgadii. In turn, the asymptotic logistic model [Formula: see text], where dc is the diameter above the upper stilt root, presented the best performance for C. glaziovii. The variable h appeared as the most important predictor of AGB of E. edulis and C. delgadii; in contrast, the stem and caudex mean basic specific gravities were not suitable predictors. The fitted species-specific models outperformed the specific and generic models selected from the literature. They may, therefore, contribute to the reduction of uncertainties in AGB estimates. In addition, the results support evidence that specific models may be necessary for species with different growth forms and (or) peculiar morphological features, especially those with great abundance and wide geographic distribution.


2019 ◽  
Vol 30 (4) ◽  
pp. 674-686 ◽  
Author(s):  
Verena Busch ◽  
Valentin H. Klaus ◽  
Deborah Schäfer ◽  
Daniel Prati ◽  
Steffen Boch ◽  
...  

The Auk ◽  
1985 ◽  
Vol 102 (3) ◽  
pp. 556-579 ◽  
Author(s):  
Gary R. Graves

Abstract Intraspecific variation in plumage was used to test the null hypotheses that geographic variation in 280 species of elevationally restricted Andean forest birds is independent of elevation and is not a function of patchy geographic distribution. Both null hypotheses were rejected. At most taxonomic levels, geographic variation in plumage was correlated positively with both the mean of its elevational distribution and the size of its geographic range. Vertical amplitude of elevational distribution was not a significant predictor of geographic variation in plumage in most taxa. Independent of these elevational correlates, patchily distributed species showed significantly more geographic variation than continuously distributed species. These results show that geographic variation and presumably ongoing speciation phenomena are greater at higher elevations. The decreased species richness at high elevations may be attributable to a higher rate of extinction from catastrophic disturbance as well as to ecological factors that limit sympatry in newly formed species.


2019 ◽  
Vol 668 ◽  
pp. 1183-1190 ◽  
Author(s):  
Qi Zhang ◽  
Dong Zhu ◽  
Jing Ding ◽  
Shuyidan Zhou ◽  
Liwei Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document