scholarly journals Exploring the Mechanisms Underlying the Therapeutic Effect of Xixin Decoction on Alzheimer's Disease Based on Network Pharmacology and Molecular Docking

Author(s):  
Zhuo Zhang ◽  
Jiang-lin Xu ◽  
Ming-qing Wei ◽  
Ting Li ◽  
Jing Shi

Abstract Background and objective: Alzheimer’s disease (AD) has been a worldwide problem, not only the treatment but also the prevention. As a commonly used Chinese Herbal Formula, Xixin Decoction (XXD) has significant therapeutic effect on AD but without clear mechanism. This study was aimed to predict the main active compounds and targets of XXD in the treatment of AD and to explore the potential mechanism by using network pharmacology and molecular docking. Methods: The compounds of XXD were searched in the TCMSP and the TCMID database, and the active compounds were screened based on the ADME model and SwissADME platform. SwissTargetPrediction platform was used to search for the primary candidate targets of XXD. The common targets related to AD obtained by two databases (GeneCards and DisGeNET) were determined as candidate proteins involved in AD. To acquire the related targets of XXD in the treatment of AD, the target proteins related to AD were intersected with the predicted targets of XXD. Then these overlapping targets were imported into the STRING database to build PPI network including hub targets; Cytoscape 3.7.2 software was used to construct the topology analysis for the herb-compound-target network diagram while one of it’s plug-in called CytoNCA was used to calculate degree value to screen the main active compounds of XXD. GO and KEGG pathway enrichment analyses were conducted to explore the core mechanism of action and biological pathways associated with the decoction via Metascape platform. We used AutoDock Vina and PyMOL 2.4.0 softwares for molecular docking of hub targets and main compounds.Results: We determined 114 active compounds which meet the conditions of ADME screening, 973 drug targets, and 973 disease targets. However, intersection analysis screened out 208 shared targets. PPI network identified 9 hub targets, including TP53, PIK3CA, MAPK1, MAPK3, STAT3, AKT1, etc. The 10 main active compounds play a major role in treatment of AD by XXD. Hub targets were found to be enriched in 10 KEGG pathways, involving the Pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, Alzheimer's disease, Neuroactive ligand-receptor interaction, Dopaminergic synapse, Serotonergic synapse and MAPK signaling pathway. The docking results indicated that the 8 hub targets exhibit good binding activity with the 9 main active compounds of XXD.Conclusions: We found the advantages of multi-compounds-multi-targets-multi-pathways regulation to reveal the mechanism of XXD for treating AD based on network pharmacology and molecular docking. Our study provided a theorical basis for further clinical application and experimental research of XXD for anti-AD in the future.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yanan Shi ◽  
Mingqi Chen ◽  
Zehua Zhao ◽  
Juhua Pan ◽  
Shijing Huang

Objective. We aimed to investigate the mechanisms underlying the effects of the Cyperi Rhizoma-Chuanxiong Rhizoma herb pair (CCHP) against depression using a network pharmacology approach. Methods. A network pharmacology approach, including screening of active compounds, target prediction, construction of a protein-protein interaction (PPI) network, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson–Boltzmann surface area (MMPBSA), were used to explore the mechanisms of CCHP against depression. Results. Twenty-six active compounds and 315 and 207 targets of CCHP and depression, respectively, were identified. The PPI network suggested that AKT1, IL-6, TP53, DRD2, MAPK1, NR3C1, TNF, etc., were core targets. GO enrichment analyses showed that positive regulation of transcription from RNA polymerase II promoter, plasma membrane, and protein binding were of great significance. Neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, dopaminergic synapse, and mTOR signaling pathway were important pathways. Molecular docking results revealed good binding affinities for the core compounds and core targets. MD simulations and MMPBSA validated that quercetin can stably bind to 6hhi. Conclusions. The effects of CCHP against depression involve multiple components, targets, and pathways, and these findings will promote further research on and clinical application of CCHP.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yi Kuan Du ◽  
Yue Xiao ◽  
Shao Min Zhong ◽  
Yi Xing Huang ◽  
Qian Wen Chen ◽  
...  

Alzheimer’s disease is a common neurodegenerative disease in the elderly. This study explored the curative effect and possible mechanism of Acori graminei rhizoma on Alzheimer’s disease. In this paper, 8 active components of Acori graminei rhizoma were collected by consulting literature and using the TCMSP database, and 272 targets were screened using the PubChem and Swiss Target Prediction databases. Introduce it into the software of Cytoscape 3.7.2 and establish the graph of “drug-active ingredient-ingredient target.” A total of 276 AD targets were obtained from OMIM, Gene Cards, and DisGeNET databases. Import the intersection targets of drugs and diseases into STRING database for enrichment analysis, and build PPI network in the Cytoscape 3.7.2 software, whose core targets involve APP, AMPK, NOS3, etc. GO analysis and KEGG analysis showed that there were 195 GO items and 30 AD-related pathways, including Alzheimer’s disease pathway, serotonin synapse, estrogen signaling pathway, dopaminergic synapse, and PI3K-Akt signaling pathway. Finally, molecular docking was carried out to verify the binding ability between Acori graminei rhizoma and core genes. Our results predict that Acori graminei rhizoma can treat AD mainly by mediating Alzheimer’s signal pathway, thus reducing the production of Aβ, inhibiting the hyperphosphorylation of tau protein, regulating neurotrophic factors, and regulating the activity of kinase to change the function of the receptor.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zhencheng Xiong ◽  
Can Zheng ◽  
Yanan Chang ◽  
Kuankuan Liu ◽  
Li Shu ◽  
...  

Objective. The purpose of this work is to study the mechanism of action of Duhuo Jisheng Decoction (DHJSD) in the treatment of osteoporosis based on the methods of bioinformatics and network pharmacology. Methods. In this study, the active compounds of each medicinal ingredient of DHJSD and their corresponding targets were obtained from TCMSP database. Osteoporosis was treated as search query in GeneCards, MalaCards, DisGeNET, Therapeutic Target Database (TTD), Comparative Toxicogenomics Database (CTD), and OMIM databases to obtain disease-related genes. The overlapping targets of DHJSD and osteoporosis were identified, and then GO and KEGG enrichment analysis were performed. Cytoscape was employed to construct DHJSD-compounds-target genes-osteoporosis network and protein-protein interaction (PPI) network. CytoHubba was utilized to select the hub genes. The activities of binding of hub genes and key components were confirmed by molecular docking. Results. 174 active compounds and their 205 related potential targets were identified in DHJSD for the treatment of osteoporosis, including 10 hub genes (AKT1, ALB, IL6, MAPK3, VEGFA, JUN, CASP3, EGFR, MYC, and EGF). Pathway enrichment analysis of target proteins indicated that osteoclast differentiation, AGE-RAGE signaling pathway in diabetic complications, Wnt signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, calcium signaling pathway, and TNF signaling pathway were the specifically major pathways regulated by DHJSD against osteoporosis. Further verification based on molecular docking results showed that the small molecule compounds (Quercetin, Kaempferol, Beta-sitosterol, Beta-carotene, and Formononetin) contained in DHJSD generally have excellent binding affinity to the macromolecular target proteins encoded by the top 10 genes. Conclusion. This study reveals the characteristics of multi-component, multi-target, and multi-pathway of DHJSD against osteoporosis and provides novel insights for verifying the mechanism of DHJSD in the treatment of osteoporosis.


Author(s):  
Feng Xu ◽  
Xiangpei Wang ◽  
Xiujuan Wei ◽  
Teng Chen ◽  
Hongmei Wu

Background: Musa basjoo pseudostem juice (MBSJ) is a well-known Chinese medicine, and Miao people use MBSJ to treat diabetes. In this work, the active ingredients and molecular mechanism of MBSJ against diabetes were explored. Methods: Anti-diabetic activity of MBSJ was evaluated using diabetic rats, and then the ingredients in the small-polar parts of MBSJ were analyzed by gas chromatography-mass spectrometer (GC-MS). Targets were obtained from several databases to develop the "ingredient-target-disease" network by Cytoscape. A collaborative analysis was carried out using the tools in Cytoscape and R packages, and molecular docking was also performed. Results: MBSJ improved the oral glucose tolerance and insulin tolerance, and reduced fasting blood glucose, glycosylated hemoglobin, total cholesterol, triglyceride, and low-density lipoprotein levels in the serum of diabetic rats. 13 potential compounds were identified by GC-MS for subsequent analysis, including Dibutyl phthalate, Oleamide, Stigmasterol, Stigmast-4-en-3-one, etc. The anti-diabetic effect of MBSJ was related to multiple signaling pathways, including Neuroactive ligand-receptor interaction, Phospholipase D signaling pathway, Endocrine resistance, Rap1 signaling pathway, EGFR tyrosine kinase inhibitor resistance, etc. Molecular docking at least partially verified the screening results of network pharmacology. Conclusion: MBSJ had good anti-diabetic activity. The small-polar parts of MBSJ were rich in anti-diabetic active ingredients. Furthermore, the analysis results showed that the anti-diabetic effect of the small-polar parts of MBSJ may be the result of multiple components, multiple targets, and multiple pathways. The current research results can provide important support for studying the active ingredients and exploring the underlying mechanism of MBSJ against diabetes.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Fung Yin Ngo ◽  
Weiwei Wang ◽  
Qilei Chen ◽  
Jia Zhao ◽  
Hubiao Chen ◽  
...  

Aberrant microglial activation drives neuroinflammation and neurodegeneration in Alzheimer’s disease (AD). The present study is aimed at investigating whether the herbal formula Qi-Fu-Yin (QFY) could inhibit the inflammatory activation of cultured BV-2 microglia. A network pharmacology approach was employed to predict the active compounds of QFY, protein targets, and affected pathways. The representative pathways and molecular functions of the targets were analyzed by Gene Ontology (GO) and pathway enrichment. A total of 145 active compounds were selected from seven herbal ingredients of QFY. Targets (e.g., MAPT, APP, ACHE, iNOS, and COX-2) were predicted for the selected active compounds based on the relevance to AD and inflammation. As a validation, fractions were sequentially prepared by aqueous extraction, ethanolic precipitation, and HPLC separation, and assayed for downregulating two key proinflammatory biomarkers iNOS and COX-2 in lipopolysaccharide- (LPS-) challenged BV-2 cells by the Western blotting technique. Moreover, the compounds of QFY in 90% ethanol downregulated iNOS in BV-2 cells but showed no activity against COX-2 induction. Among the herbal ingredients of QFY, Angelicae Sinensis Radix and Ginseng Radix et Rhizoma contributed to the selective inhibition of iNOS induction. Furthermore, chemical analysis identified ginsenosides, especially Rg3, as antineuroinflammatory compounds. The herbal formula QFY may ameliorate neuroinflammation via downregulating iNOS in microglia.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yangyun Wang ◽  
Wandong Yu ◽  
Chaoliang Shi ◽  
Wei Jiao ◽  
Junhong Li ◽  
...  

Purpose. We aimed to find the possible key targets of Yougui pill and Buzhong Yiqi decoction for the treatment of sexual dysfunction. Materials and Methods. The composition of Yougui pill combined with Buzhong Yiqi decoction was obtained, and its effective components of medicine were screened using ADME; the component target proteins were predicted and screened based on the TCMSP and BATMAN databases. Target proteins were cross-validated using the CTD database. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for target proteins using the Cytoscape plugin ClueGO + CluePedia and the R package clusterProfiler, respectively. Subsequently, protein-protein interaction (PPI) analyses were conducted using the STRING database. Finally, a pharmacological network was constructed. Results. The pharmacological network contained 89 nodes and 176 relation pairs. Among these nodes, there were 12 for herbal medicines (orange peel, licorice, Eucommia, Aconite, Astragalus, Chinese wolfberry, yam, dodder seed, ginseng, Cornus officinalis, Rehmannia, and Angelica), 9 for chemical components (18-beta-glycyrrhetinic acid, carvacrol, glycyrrhetinic acid, higenamine, nobilin, quercetin, stigmasterol, synephrine, and thymol), 62 for target proteins (e.g., NR3C1, ESR1, PTGS2, CAT, TNF, INS, and TP53), and 6 for pathways (MAPK signaling pathway, proteoglycans in cancer, dopaminergic synapse, thyroid hormone signaling pathway, cAMP signaling pathway, and neuroactive ligand-receptor interaction). Conclusion. NR3C1, ESR1, PTGS2, CAT, TNF, INS, and TP53 may be important targets for the key active elements in the decoction combining Yougui pill and Buzhong Yiqi. Furthermore, these target proteins are relevant to the treatment of sexual dysfunction, probably via pathways associated with cancer and signal transduction.


Author(s):  
Yehong Du ◽  
Yexiang Du ◽  
Yun Zhang ◽  
Zhilin Huang ◽  
Min Fu ◽  
...  

AbstractMitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is an essential negative regulator of MAPKs by dephosphorylating MAPKs at both tyrosine and threonine residues. Dysregulation of the MAPK signaling pathway has been associated with Alzheimer’s disease (AD). However, the role of MKP-1 in AD pathogenesis remains elusive. Here, we report that MKP-1 levels were decreased in the brain tissues of patients with AD and an AD mouse model. The reduction in MKP-1 gene expression appeared to be a result of transcriptional inhibition via transcription factor specificity protein 1 (Sp1) cis-acting binding elements in the MKP-1 gene promoter. Amyloid-β (Aβ)-induced Sp1 activation decreased MKP-1 expression. However, upregulation of MKP-1 inhibited the expression of both Aβ precursor protein (APP) and β-site APP-cleaving enzyme 1 by inactivating the extracellular signal-regulated kinase 1/2 (ERK)/MAPK signaling pathway. Furthermore, upregulation of MKP-1 reduced Aβ production and plaque formation and improved hippocampal long-term potentiation (LTP) and cognitive deficits in APP/PS1 transgenic mice. Our results demonstrate that MKP-1 impairment facilitates the pathogenesis of AD, whereas upregulation of MKP-1 plays a neuroprotective role to reduce Alzheimer-related phenotypes. Thus, this study suggests that MKP-1 is a novel molecule for AD treatment.


Author(s):  
Evangelos Karatzas ◽  
Margarita Zachariou ◽  
Marilena Bourdakou ◽  
George Minadakis ◽  
Anastasios Oulas ◽  
...  

AbstractUnderstanding disease underlying biological mechanisms and respective interactions remains an elusive, time consuming and costly task. The realization of computational methodologies that can propose pathway/mechanism communities and reveal respective relationships can be of great value as it can help expedite the process of identifying how perturbations in a single pathway can affect other pathways.Random walks is a stochastic approach that can be used for both efficient discovery of strong connections and identification of communities formed in networks. The approach has grown in popularity as it efficiently exposes key network components and reveals strong interactions among genes, proteins, metabolites, pathways and drugs. Using random walks in biology, we need to overcome two key challenges: 1) construct disease-specific biological networks by integrating information from available data sources as they become available, and 2) provide guidance to the walker so as it can follow plausible trajectories that comply with inherent biological constraints.In this work, we present a methodology called PathWalks, where a random walker crosses a pathway-to-pathway network under the guidance of a disease-related map. The latter is a gene network that we construct by integrating multi-source information regarding a specific disease. The most frequent trajectories highlight communities of pathways that are expected to be strongly related to the disease under study. We present maps for Alzheimer’s Disease and Idiopathic Pulmonary Fibrosis and we use them as case-studies for identifying pathway communities through the application of PathWalks.In the case of Alzheimer’s Disease, the most visited pathways are the “Alzheimer’s disease” and the “Calcium signaling” pathways which have indeed the strongest association with Alzheimer’s Disease. Interestingly however, in the top-20 visited pathways we identify the “Kaposi sarcoma-associated herpesvirus infection” (HHV-8) and the “Human papillomavirus infection” (HPV) pathways suggesting that viruses may be involved in the development and progression of Alzheimer’s. Similarly, most of the highlighted pathways in Idiopathic Pulmonary Fibrosis are backed by the bibliography. We establish that “MAPK signaling” and “Cytokine-cytokine receptor interaction” pathways are the most visited. However, the “NOD receptor signaling” pathway is also in the top-40 edges. In Idiopathic Pulmonary Fibrosis samples, increased NOD receptor signaling has been associated with augmented concentrations of certain strains of Streptococcus. Additional experimental evidence is required however to further explore and ascertain the above indications.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Weie Zhou ◽  
Xuefeng Zhou ◽  
Yuan Zhang ◽  
Yuyang Wang ◽  
Wenjie Wu ◽  
...  

Diabetic nephropathy (DN) is one of the common and severe microvascular complications of diabetes mellitus (DM). The occurrence and development of DN are related to multiple factors in the human body, which makes DN a complex disease, and the pathogeneses of DN have not yet been fully illustrated. Furthermore, DN lacks effective drugs for treatment nowadays. Chinese herbal medicine (CHM) often shows the feature of multicomponents, multitargets, multipathways, and synergistic effects and shows a promising source of new therapeutic drugs for DN. As a CHM, Tangshen Formula (TSF) was used to treat DN patients in China. However, its bioactive compounds and holistic pharmacological mechanisms on DN are both unclear. A network pharmacology approach was firstly applied to explore multiple active compounds and multiple key pharmacological mechanisms for TSF treating DN by drug-targeted interaction databases, herb-compound-target network, protein-protein interaction network, compound-target-pathway network, and analysis methods. And the results showed that TSF have the characteristic of multicomponents, multitargets, multipathways, and synergistic effects for treating DN. The quercetin, naringenin, kaempferol, and isorhamnetin as key active compounds and the PI3K-Akt signaling pathway, TNF signaling pathway, nonalcoholic fatty liver disease (NAFLD), focal adhesion, rap1 signaling pathway, T cell receptor signaling pathway, MAPK signaling pathway, and insulin resistance as the key molecular mechanisms play important roles in TSF treating DN. Moreover, quercetin, naringenin, kaempferol, and isorhamnetin were successfully detected in TSF by the UHPLC-MS/MS analysis method. And their concentrations were 0.224, 8.295, 0.0564, and 0.0879 mg·kg-1, respectively. The present findings not only provide new insights for a deeper understanding of the constituent basis and pharmacology of TSF but also provide guidance for further pharmacological studies on TSF.


Sign in / Sign up

Export Citation Format

Share Document