scholarly journals Development of Novel 2-Acetylphenol-O-Alkylhydroxyethylamine Derivatives as Multifunctional Agents for Alzheimer’s Disease Treatment

Author(s):  
Gaofeng zhu ◽  
xinfeng li ◽  
Jing Yang ◽  
ying he ◽  
jing mi ◽  
...  

Abstract Due to the complex pathogenesis of AD, the multi-target-directed ligands (MTDLs) strategy presented the best pharmacological option for AD treatment. Herein, a series of novel 2-acetylphenol-O-alkylhydroxyethylamine derivatives was rationally designed and synthesized. Of these derivatives, 5c was a good multifunctional agent (eeAChE IC50 =7.9 μM, MAO-B IC50 = 9.9 μM, BACE1 IC50 = 8.3 μM) in vitro and displayed a mixed-type AChE inhibition, which could bind to the CAS and PAS of AChE. Compound 5c also exhibited good antioxidant activity (ORAC = 2.5 eq) and neuroprotective effects. Furthermore, compound 5c was a selective metal ions chelator. And it could cross blood-brain barrier in vitro and complied with drug-like properties rule of 5. Therefore, compound 5c was a promising multifunctional agent for the treatment of AD.

BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Hajar Karimi Askarani ◽  
Aida Iraji ◽  
Arezoo Rastegari ◽  
Syed Nasir Abbas Bukhari ◽  
Omidreza Firuzi ◽  
...  

Abstract To discover multifunctional agents for the treatment of Alzheimer's disease (AD), a new series of 1,2,3-triazole-chromenone derivatives were designed and synthesized based on the multi target-directed ligands approach. The in vitro biological activities included acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition as well as anti-Aβ aggregation, neuroprotective effects, and metal-chelating properties. The results indicated a highly selective BuChE inhibitory activity with an IC50 value of 21.71 μM for compound 10h as the most potent compound. Besides, compound 10h could inhibit self-induced Aβ1–42 aggregation and AChE-induced Aβ aggregation with 32.6% and 29.4% inhibition values, respectively. The Lineweaver–Burk plot and molecular modeling study showed that compound 10h targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of BuChE. It should be noted that compound 10h was able to chelate biometals. Thus, the designed scaffold could be considered as multifunctional agents in AD drug discovery developments.


Biomédica ◽  
2019 ◽  
Vol 39 (3) ◽  
pp. 491-501
Author(s):  
María del Pilar Olaya ◽  
Nadezdha Esperanza Vergel ◽  
José Luis López ◽  
María Dolores Viña ◽  
Mario Francisco Guerrero

Introduction: Parkinson’s disease is the second most common neurodegenerative disease. Monoamine oxidase B inhibitors are used in the treatment of this disease concomitantly with levodopa or as monotherapy. Several substituted coumarins have shown activity as inhibitors of monoamine oxidase B.Objective: To evaluate the possible antiparkinsonian effects of the coumarin analogue FCS005 (3-methyl-7H-furo[3,2-g]chromen-7-one) in mouse models, as well as its inhibitory activity towards monoamine oxidases (MAO) and its antioxidant activity.Materials and methods: FCS005 was synthesized and the reversal of hypokinesia was evaluated in the reserpine and levodopa models. Moreover, in the haloperidol model, its anticataleptic effects were evaluated. Additionally, the monoamine oxidase inhibitory activity and antioxidant activity of FCS005 were evaluated using in vitro and ex vivo studies, respectively.Results: FCS005 (100 mg/kg) caused the reversal of hypokinesia in the reserpine and levodopa models. This furocoumarin also presented anti-cataleptic effects at the same dose. Besides, it showed selective inhibitory activity towards the MAO-B isoform and antioxidant activity.Conclusion: These results attribute interesting properties to the compound FCS005. It is important to continue research on this molecule considering that it could be a potential antiparkinsonian agent.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 837
Author(s):  
Takashi Fujimoto ◽  
Yoichi Morofuji ◽  
Andrej Kovac ◽  
Michelle A. Erickson ◽  
Mária A. Deli ◽  
...  

Statins have neuroprotective effects on neurological diseases, including a pleiotropic effect possibly related to blood–brain barrier (BBB) function. In this study, we investigated the effects of pitavastatin (PTV) on lipopolysaccharide (LPS)-induced BBB dysfunction in an in vitro BBB model comprising cocultured primary mouse brain endothelial cells, pericytes, and astrocytes. LPS (1 ng/mL, 24 h) increased the permeability and lowered the transendothelial electrical resistance of the BBB, and the co-administration of PTV prevented these effects. LPS increased the release of interleukin-6, granulocyte colony-stimulating factor, keratinocyte-derived chemokine, monocyte chemotactic protein-1, and regulated on activation, normal T-cell expressed and secreted from the BBB model. PTV inhibited the LPS-induced release of these cytokines. These results suggest that PTV can ameliorate LPS-induced BBB dysfunction, and these effects might be mediated through the inhibition of LPS-induced cytokine production. Clinically, therapeutic approaches using statins combined with novel strategies need to be designed. Our present finding sheds light on the pharmacological significance of statins in the treatment of central nervous system diseases.


2020 ◽  
Vol 16 (3) ◽  
pp. 326-339 ◽  
Author(s):  
Javor Mitkov ◽  
Alexandra Kasabova-Angelova ◽  
Magdalena Kondeva-Burdina ◽  
Virginia Tzankova ◽  
Diana Tzankova ◽  
...  

Objective:The syntheses and biological activities of 8-thiosubstituted-1,3,7- trimethylxanthine derivatives bearing an aromatic hydrazide-hydrazone fragment in the side chain at C8 are described.Methods:The chemical structures of the synthesized compounds 6a-m were confirmed based on their MS, FTIR, 1H NMR and 13C NMR analyses.Results:The in vitro investigations of neuroprotective effects manifested on cellular (human neuroblastoma cell line SH-SY5Y) and sub-cellular (isolated rat brain synaptosomes) levels show that compounds 6g and 6i demonstrate statistically significant activity. The performed monoamine oxidase B (MAO-B) inhibition study in vitro show that compounds 6g and 6i possess a significant MAO-B inhibition activity close to L-deprenyl.Conclusion:These results suggest that such compounds may be utilized for the development of new candidate MAO-B inhibitors for the treatment of Parkinson’s disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 887
Author(s):  
Leah Mursaleen ◽  
Brendon Noble ◽  
Satyanarayana Somavarapu ◽  
Mohammed Gulrez Zariwala

Hydroxytyrosol (HT) is a natural phenolic antioxidant which has neuroprotective effects in models of Parkinson’s disease (PD). Due to issues such as rapid metabolism, HT is unlikely to reach the brain at therapeutic concentrations required for a clinical effect. We have previously developed micellar nanocarriers from Pluronic F68® (P68) and dequalinium (DQA) which have suitable characteristics for brain delivery of antioxidants and iron chelators. The aim of this study was to utilise the P68 + DQA nanocarriers for HT alone, or in combination with the iron chelator deferoxamine (DFO), and assess their physical characteristics and ability to pass the blood–brain barrier and protect against rotenone in a cellular hCMEC/D3-SH-SY5Y co-culture system. Both HT and HT + DFO formulations were less than 170 nm in size and demonstrated high encapsulation efficiencies (up to 97%). P68 + DQA nanoformulation enhanced the mean blood–brain barrier (BBB) passage of HT by 50% (p < 0.0001, n = 6). This resulted in increased protection against rotenone induced cytotoxicity and oxidative stress by up to 12% and 9%, respectively, compared to the corresponding free drug treatments (p < 0.01, n = 6). This study demonstrates for the first time the incorporation of HT and HT + DFO into P68 + DQA nanocarriers and successful delivery of these nanocarriers across a BBB model to protect against PD-related oxidative stress. These nanocarriers warrant further investigation to evaluate whether this enhanced neuroprotection is exhibited in in vivo PD models.


2020 ◽  
pp. 45-51
Author(s):  
Miloš Jovanović ◽  
Zorica Drinić ◽  
Dubravka Bigović ◽  
Ana Alimpić-Aradski ◽  
Sonja Duletić-Laušević ◽  
...  

This study aimed to assess the antineurodegenerative and antioxidant activity of Helichrysum plicatum flower extract, as well as to identify extract ingredients with acceptable pharmacokinetic parameters such as gastrointestinal absorption, blood-brain barrier permeation, and P-glycoprotein-mediated effusion for optimal therapeutic brain exposure. Antioxidant activity was evaluated by ABTS, FRAP, and b-carotene bleaching assays, while antineurodegenerative activity was tested using acetylcholinesterase (AChE) and tyrosinase (TYR) inhibitory activity assays. In the ABTS test, the dry extract at the highest applied concentration (500 µg/mL) showed better or similar antioxidant activity compared to the standards. In the b-carotene assay, all applied concentrations of the extract showed significantly higher activity than vitamin C. No concentration-dependent activity was observed in the AChE assay, while in the TYR assay the lowest extract concentration (100 µg/mL) showed the highest percentage of inhibition (27.92 %). Pharmacokinetic parameters of compounds were predicted by in silico SwissADME online tool in accordance by the rules of drug-likeness. According to the pharmacokinetic properties, we concluded that pentoxymethoxylated flavones may represent CNS drug candidates for further studies.


2019 ◽  
Vol 20 (3) ◽  
pp. 498 ◽  
Author(s):  
Kamila Czarnecka ◽  
Małgorzata Girek ◽  
Paweł Kręcisz ◽  
Robert Skibiński ◽  
Kamil Łątka ◽  
...  

Here we report the two-step synthesis of 8 new cyclopentaquinoline derivatives as modifications of the tetrahydroacridine structure. Next, the biological assessment of each of them was performed. Based on the obtained results we identified 6-chloro-N-[2-(2,3-dihydro-1H-cyclopenta[b]quinolin-9-ylamino)-hexyl]]-nicotinamide hydrochloride (3e) as the most promising compound with inhibitory potencies against EeAChE and EqBuChE in the low nanomolar level 67 and 153 nM, respectively. Moreover, 3e compound is non-hepatotoxic, able to inhibit amyloid beta aggregation, and shows a mix-type of cholinesterase’s inhibition. The mixed type of inhibition of the compound was confirmed by molecular modeling. Then, yeast three-hybrid (Y3H) technology was used to confirm the known ligand-receptor interactions. New derivatives do not show antioxidant activity (confirmed by the use of two different tests). A pKa assay method was developed to identify the basic physicochemical properties of 3e compound. A LogP assay confirmed that 3e compound fulfills Lipinsky’s rule of five


2020 ◽  
Author(s):  
Hajar Karimi Askarani ◽  
Aida Iraji ◽  
Arezoo Rastegari ◽  
Syed Nasir Abbas Bukhari ◽  
Omidreza Firuzi ◽  
...  

Abstract To discover multifunctional agents for the treatment of Alzheimer's disease (AD), a new series of 1,2,3-triazole-chromenone derivatives were designed and synthesized based on the multi target-directed ligands approach. The in vitro biological activities were evaluated including acetylcholinesterase (AChE), butylcholinesterase (BuChE), and Aβ1−42 aggregation inhibition as well as neuroprotective effects and metal-chelating properties. The results indicated highly selective BuChE inhibitory activity with IC50 values of 21.71 µM for compound 10 h as the most potent compound. Besides, compound 10 h could inhibit self-induced Aβ1−42 aggregation and AChE-induced Aβ aggregation with 32.6% and 29.4% inhibition value, respectively. A Lineweaver–Burk plot and molecular modeling study also showed that compound 10 h targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of BuChE. It should be noted that compound 10 h was potent as a selective Cu2+ chelator. Thus, the designed scaffold could be considered as multifunctional agents for AD drug discovery developments.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5159 ◽  
Author(s):  
Sara Thabit ◽  
Heba Handoussa ◽  
Mariana Roxo ◽  
Nesrine S. El Sayed ◽  
Bruna Cestari de Azevedo ◽  
...  

Background Cassia fistula (L.) (Fabaceae) is a medicinal plant from tropical Asia. It is known for its marked antioxidant activity, which is attributed to its high phenolic content. The present study aims at testing both the antioxidant and neuroprotective effects of a hydroalcoholic extract from the aerial parts of Cassia fistula using the Caenorhabditis elegans model, which is widely used in this context. Methods Chemical profiling of secondary metabolites that seem to be responsible for both antioxidant and neuroprotective capacities was carried out by HPLC/PDA/ESI-MSn. Antioxidant activity was tested in vitro by CUPRAC and DPPH assays. In vivo antioxidant and neuroprotective activities were investigated using the C. elegans model. Results The Cassia extract improved the survival rate of the nematodes and protected them against oxidative stress. In addition, a decrease in the accumulation of reactive oxygen species (ROS) was observed. The important role of DAF-16/FOXO pathway was confirmed through an increased nuclear localization of the DAF-16 transcription factor, increased expression of SOD-3 stress response gene and decreased expression of HSP-16.2. Furthermore, the putative involvement of SKN-1/NRF2 pathway was demonstrated by a decrease in GST-4 levels. A neuroprotective activity of the Cassia extract was shown by a decline in polyglutamine (polyQ40) aggregate formation and a delay in paralysis caused by amyloid beta (Aβ1–42) accumulation. Discussion The Cassia extract exhibits substantial antioxidant and neuroprotective activities in vivo, which might provide a rich and novel source of natural antioxidants and neuroprotective compounds to be further studied for the use in various food and cosmetic industrial fields.


Sign in / Sign up

Export Citation Format

Share Document