scholarly journals Activation of the NF-κB Signaling Pathway Promotes Malignancy in Bladder Cancer Cells in a Positive Feedback Manner

2020 ◽  
Author(s):  
Zhenfeng guan ◽  
Yi Sun ◽  
YaZhuo Jiang ◽  
Xinyang Wang ◽  
Jinhai Fan

Abstract Background: The main issue arising from bladder cancer (BCa) is the high relapse ratio and tumor progression, the mechanism of which remains to be elucidated. Interaction of tumor cells with the stroma of microenvironment promoting tumor progression warrants much attention from researchers. Among all stromal cells, endothelial cells (ECs) are exceptional. Numerous studies have investigated its role of angiogenesis, but have not studied immunocyte recruitment and chemokine secretion, the important significance of which in tumor progression has been proven. Meanwhile, to the best of our knowledge, few studies have focused on the direct interaction between tumor cells and ECs in BCa tissue, which was the aim of the present study. Methods: In the present study, immunohistochemical staining is used for detecting the distribution of ECs in BCa tissue, and we use SPSS 19 to analysis the relationship between ECs distribution and tumor grade/stage; inadition, co-curlturing of tumor cell with ECs is usd to mimicking the interaction of tumor cell with ECs, followed by Chamber Assay, BrdU incorporoartion, WB, Qt-PCR, ect, to investiatin the mechanism. Results: The distribution of ECs in BCa tissue is significantly increased according to BCa grade and negatively associated to the time from BCa diagnosis to progression, manifesting as an independent risk factor for BCa prognosis. The following in vitro experiment indicates that the conditional medium from co-culture of tumor cells (T24/J82) with ECs (human umbilical vein endothelial cells, which were used as ECs in the in vitro experiment) contributes to the activation of the NF-ĸB signaling pathway in tumor cells, leading to the upregulation of CXCL1/8. This further results in enhanced tumor cell malignancy and EC recruitment, manifested as a positive feedback loop. Conclusions: The present study provided a further understanding on the role of ECs in BCa progression—not only by angiogenesis but also by interacting with tumor cell dirctly.

2018 ◽  
Vol 46 (2) ◽  
pp. 520-531 ◽  
Author(s):  
Yan Ding ◽  
Lanlan Shan ◽  
Wenqing Nai ◽  
Xiaojun Lin ◽  
Ling Zhou ◽  
...  

Background/Aims: The mechanistic target of rapamycin (mTOR) signaling pathway is essential for angiogenesis and embryonic development. DEP domain-containing mTOR-interacting protein (DEPTOR) is an mTOR binding protein that functions to inhibit the mTOR pathway In vitro experiments suggest that DEPTOR is crucial for vascular endothelial cell (EC) activation and angiogenic responses. However, knowledge of the effects of DEPTOR on angiogenesis in vivo is limited. This study aimed to determine the role of DEPTOR in tissue angiogenesis and to elucidate the molecular mechanisms. Methods: Cre/loxP conditional gene knockout strategy was used to delete the Deptor gene in mouse vascular ECs. The expression or distribution of cluster of differentiation 31 (CD31), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1 alpha (HIF-1α) were detected by immunohistochemical staining or western blot. Tube formation assay was used to measure angiogenesis in vitro. Results: Deptor knockdown led to increased expression of CD31, VEGF and HIF-1α in heart, liver, kidney and aorta. After treatment with rapamycin, their expression was significantly down regulated. In vitro, human umbilical vein endothelial cells (HUVECs) were transfected with DEPTOR-specific small interfering RNA (siRNA), which resulted in a significant increase in endothelial tube formation and migration rates. In contrast, DEPTOR overexpression markedly reduced the expression of CD31, VEGF and HIF-1α. Conclusions: Our findings demonstrated that deletion of the Deptor gene in vascular ECs resulted in upregulated expression of CD31 and HIF-1α, and further stimulated the expression of VEGF which promoted angiogenesis, indicating that disruption of normal angiogenic pathways may occur through hyperactivation of the mTORC1/HIF-1α/VEGF signaling pathway.


1980 ◽  
Vol 151 (4) ◽  
pp. 984-989 ◽  
Author(s):  
V Schirrmacher ◽  
R Cheingsong-Popov ◽  
H Arnheiter

Murine hepatocytes, isolated by an in situ collagenase-perfusion technique and cultured in Petri dishes, were shown to form rosettes with liver-metastasizing syngeneic tumor cells. Pretreatment of the tumor cells with neuraminidase generally increased the binding, whereas pretreatment of the liver cells with neuraminidase abolished the binding completely. The tumor-cell binding may be mediated by the previously described lectin-like receptor of hepatocytes that also was sensitive to neuraminidase treatment and that bound desialylated cells better than normal cells. Anti-H-2 sera could efficiently inhibit the rosette formation of metastatic tumor cells with the hepatocytes, which points to a possible role of H-2 molecules in this interaction of neoplastic and normal cells.


2013 ◽  
Vol 110 (07) ◽  
pp. 141-152 ◽  
Author(s):  
Yaw Asare ◽  
Erdenechimeg Shagdarsuren ◽  
Johannes Schmid ◽  
Pathricia Tilstam ◽  
Jochen Grommes ◽  
...  

SummaryThe COP9 signalosome (CSN), a multifunctional protein complex involved in the regulation of cullin-RING-E3 ubiquitin ligases (CRLs), has emerged as a regulator of NF-κB signalling. As NF-κB drives the expression of pro-inflammatory and pro-atherosclerotic genes, we probed the yet unknown role of the CSN, in particular CSN5, on NF-KB-mediated atherogenic responses in endothelial cells. Co-immunoprecipitation in human umbilical vein endothelial cells (HUVECs) revealed the presence of a super-complex between IKK and CSN, which dissociates upon TNF-α stimulation. Furthermore, CSN5 silencing enhanced TNF-α-induced IKB-α degradation and NF-κB activity in luci-ferase reporter assays. This was paralleled by an increased NF-KB-driven upregulation of atherogenic chemokines and adhesion molecules, as measured by qPCR and flow cytometry, and translated into an enhanced arrest of THP-1 monocytes on TNF-α-stimulated, CSN5-depleted HUVECs. Reverse effects on NF-κB activity and THP-1 arrest were seen upon CSN5 overexpression. Finally, double-immunostaining confirmed the expression of CSN subunits in the endothelium of human atherosclerotic lesions, and revealed an increased expression of CSN5 which correlated with atheroprogression. In conclusion, endothelial CSN5 attenuates NF-KB-dependent pro-inflammatory gene expression and monocyte arrest on stimulated endothelial cells in vitro, suggesting that CSN5 might serve as a negative regulator of atherogenesis.Note: The review process for this manuscript was fully handled by G. Y. H. Lip, Editor in Chief.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1055-1055
Author(s):  
Antonella Zucchetto ◽  
Dania Benedetti ◽  
Riccardo Bomben ◽  
Claudio Tripodo ◽  
Fleur Bossi ◽  
...  

Abstract CD38, a negative prognostic marker for patients with CLL, has been demonstrated to be a key molecule in the interactions occurring in the context of tumor microenvironment, mediating both survival and migratory signals for CLL cells. By taking advantage of gene expression profiling studies (GEP) comparing 11 CD38pos (CD38>30%) and 15 CD38neg (CD38<10%) CLLs, we identified as over-expressed in CD38pos CLL cells: i) genes for the two C-C chemokines CCL3 and CCL4 (median-log difference, MLD-CCL3= 3.5; MLD-CCL4=4.4); real-time quantitative PCR (RTQ-PCR) of selected cases confirmed GEP results; ii) the gene for CD49d (MLD=4.4); a high correlation between CD38 and CD49d protein expression, also characterizing the CLL series of the present study, has been reported previously. In vitro experiments, performed on purified tumor cells from additional 11 CD38pos CLL cases cultured for 14 (t14) and 24 (t24) hours in the presence of either the agonist anti-CD38 monoclonal antibody (mAb) IB4 or the non-agonistic anti-CD38 mAb IB6 as control, demonstrated upregulation of CCL3/CCL4 transcripts at t14 (CCL3: mean fold increase=18, p=0.041; CCL4: mean fold increase=13.8, p=0.005), as assessed by RTQ-PCR, and an increased release of CCL3/CCL4 proteins at t24 (CCL3: mean =0.9 ng/mL, mean fold increase=14, p=0.003; CCL4: mean =1.7 ng/mL, mean fold increase=49, p=0.01), as assessed by ELISA. Consistently, immunohistochemistry (IHC) analysis performed in bone marrow biopsies (BMB) from 20 CLL patients (10 CD38pos and 10 CD38neg cases) showed detectable levels of CCL3 in 8 cases, all but one belonging to the CD38pos group (p=0.02). Expression of the CCL3/CCL4 specific receptors CCR1 and CCR5 was examined by flow cytometry in peripheral blood cell subpopulations from 30 CLL (12 CD38pos and 18 CD38neg). Irrespectively of CD38 expression by CLL cells, monocytes showed the highest expression levels for CCR1 and, although at a lesser extent, CCR5. Consistently, CCL3 was able to attract CLL-derived monocytes by in-vitro chemotaxis experiments, and a higher number of infiltrating CD68pos macrophages were found in BMB of CD38pos compared to CD38neg CLLs (p=0.016). In parallel experiments, conditioned media (CM) from CCL3-stimulated macrophages were collected; these CM were able to induce expression of the CD49d-ligand VCAM in human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (ADMEC). As shown by ELISA, TNFalpha was among the cytokines contained in macrophage-CM. This citokine was likely responsible for VCAM up-regulation by HUVEC and ADMEC, as suggested by TNFalpha neutralization experiments leading to a suppression of VCAM-1 induction in endothelial cell models. Again, IHC analysis of CLL BMB showed a meshwork of VCAM-1-positive cells more prominent in the context of lymphoid infiltrates of CD38pos, as compared to CD38neg cases (p=0.002). To verify whether CD49d engagement through VCAM-1 could enhance the protection against spontaneous apoptosis of CLL cells in vitro, we cultured purified CD38pos/CD49dpos CLL cells from 5 cases onto VCAM-1-transfected L cells or mock-transfected L cells. Results demonstrated a substantial improvement in cell viability after CD49d engagement: as high as 70%±25 cells were viable after 10 days of culture on L-VCAM cells compared to 50%±25 in control conditions (p=0.009). Altogether, these results identify molecules involved in a functional cross-talk between CD38/CD49d-expressing CLL and cells of the tumor microenvironment. This interplay may eventually affect survival and recirculation of tumor cells via the CD49d/VCAM pair.


2020 ◽  
Author(s):  
Wen-Hao Zhou ◽  
Yi-Ming Su ◽  
Yu Zhang ◽  
Bang-Min Han ◽  
Hai-Tao Liu ◽  
...  

Abstract Background Docetaxel is a first-line chemotherapy for the treatment of patients with castration-resistant prostate cancer (CRPC). Despite the good initial response of docetaxel, drug resistance will inevitably occur. Mechanisms underlying docetaxel resistance are not well elaborated. Endothelial cells (ECs) have been implicated in the progression and metastasis of prostate cancer (PCa). However, little attention has been paid to the role of ECs in the development of docetaxel resistance in PCa. Methods Here, we sought to investigate the function and mechanism of ECs involving in the docetaxel resistance of PCa. The 22Rv1 and C4-2B PCa cell lines were cultured with or without human umbilical vein endothelial cells (HUVEC). The proliferation of each PCa cell line was assessed by CCK8 and EdU assays. Cell viability of each PCa cell line treated with docetaxel was evaluated by CCK8. Apoptosis was measured by flow cytometry. Quantitative reverse transcription (RT)-PCR assay was used to determine the expression of ETS related gene (ERG) in each PCa cell line and FGF2 in HUVEC. The proteins including ERG, Caspase3, PARP, Akt, p-Akt, mTOR and p-mTOR were quantified by western blotting. ERG overexpressing C4-2B cells(C4-2B-ERG) were constructed by transfection with pLenti6.3-ERG lentivirus. C4-2B-ERG cells were knocked down by transfecting with ERG siRNAs. Differentially expressed cytokines between the serum-free media from 22Rv1 and 22Rv1/HUVEC co-culture system were detected by human cytokine array and determined by ELISA assay. Tumors were induced in mice by injecting 22Rv1 cells with or without HUVEC and treated with docetaxel. Tumor growth and apoptosis were examined by immunohistochemistry and TUNEL respectively. Results ECs promoted proliferation and inhibited apoptosis in PCa cells (in vitro) and mouse xenograft tumors induced by these cells (in vivo) under docetaxel treatment. ECs secreted FGF2 to induce ERG expression and activate the Akt/mTOR signaling pathway in PCa cells contributing to docetaxel resistance. Blocking FGF2 could reverse the enhancing effects of HUVEC on docetaxel resistance in PCa cells. Inhibition of the Akt/mTOR signaling pathway could alleviate chemoresistance mediated by ERG. Conclusion ECs promote docetaxel resistance via FGF2/ERG/Akt/mTOR signaling pathway in PCa cells. Targeting FGF/ FGFR signaling may represent a promising therapeutic strategy to overcome docetaxel resistance.


2021 ◽  
Vol 8 (6) ◽  
Author(s):  
Qiang Wu ◽  
Shunxiang Xu ◽  
Fei Wang ◽  
Bo He ◽  
Xin Wang ◽  
...  

Abstract Magnesium (Mg) is an important element for its enhanced osteogenic and angiogenic properties in vitro and in vivo, however, the inherent alkalinity is the adverse factor that needs further attention. In order to study the role of alkalinity in regulating osteogenesis and angiogenesis in vitro, magnesium-silicocarnotite [Mg-Ca5(PO4)2SiO4, Mg-CPS] was designed and fabricated. In this study, Mg-CPS showed better osteogenic and angiogenic properties than CPS within 10 wt.% magnesium oxide (MgO), since the adversity of alkaline condition was covered by the benefits of improved Mg ion concentrations through activating Smad2/3-Runx2 signaling pathway in MC3T3-E1 cells and PI3K-AKT signaling pathway in human umbilical vein endothelial cells in vitro. Besides, provided that MgO was incorporated with 15 wt.% in CPS, the bioactivities had declined due to the environment consisting of higher-concentrated Mg ions, stronger alkalinity and lower Ca/P/Si ions caused. According to the results, it indicated that bioactivities of Mg-CPS in vitro were regulated by the double-edged effects, which were the consequence of Mg ions and alkaline environment combined. Therefore, if MgO is properly incorporated in CPS, the improved bioactivities could cover alkaline adversity, making Mg-CPS bioceramics promising in orthopedic clinical application for its enhancement of osteogenesis and angiogenesis in vitro.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiawei Xiao ◽  
Lian Gong ◽  
Mengqing Xiao ◽  
Dong He ◽  
Liang Xiang ◽  
...  

PurposeLong non-coding RNAs (lncRNAs) play an important role in the occurrence and development of bladder cancer, but the underlying molecular mechanisms remain largely unknown. In this study, we found that LINC00467 was significantly highly expressed in bladder cancer through bioinformatic analysis. The present study aimed to explore the role of LINC00467 in bladder cancer and its possible underlying molecular mechanisms.MethodsThe expression of LINC00467 was obtained from GEO (GSE31189), the TCGA database, and qRT-PCR. The role of LINC00467 in bladder cancer was assessed both in vitro and in vivo. RIP, RNA pulldown, and CO-IP were used to demonstrate the potential mechanism by which LINC00467 regulates the progression of bladder cancer.ResultsThrough the analysis of GEO (GSE133624) and the TCGA database, it was found that LINC00467 was highly expressed in bladder cancer tissues and that the expression of LINC00467 was significantly negatively correlated with patient prognosis. Cell and animal experiments suggest that LINC00467 promotes the proliferation and invasion of bladder cancer cells. On the one hand, LINC00467 can directly bind to NF-kb-p65 mRNA to stabilize its expression. On the other hand, LINC00467 can directly bind to NF-kb-p65 to promote its translocation into the nucleus to activate the NF-κB signaling pathway, which promotes the progression of bladder cancer.ConclusionsLINC00467 is highly expressed in bladder cancer and can promote the progression of bladder cancer by regulating the NF-κB signaling pathway. Therefore, targeting LINC00467 is very likely to provide a new strategy for the treatment of bladder cancer and for improving patient prognosis.


2021 ◽  
Author(s):  
Ke Xu ◽  
Kai Fang ◽  
Yueping Zhan ◽  
Yuqian Wang ◽  
Chengqi Wu ◽  
...  

Abstract Background Anti-angiogenesis therapy has increasingly become an important strategy for the treatment of colorectal cancer. Recent studies have shown that tumor microenvironment (TME) promotes tumour angiogenesis. Bufalin is an active compound whose anti-tumor efficacy has been proven by previous studies. However, there are very few studies on the anti-angiogenic effects of bufalin. Methods Herein, human umbilical vein endothelial cells (HUVEC) tube formation, migration and adhesion test were used to assess angiogenesis in vitro. Western blot and quantitative PCR were used to detect relevant protein levels and the expressions of mRNAs. Subcutaneous xenograft tumor model and hepatic metastasis model in mice were established to investigate the influence of bufalin on angiogenesis-mediated by TME in vivo. Results We found that the angiogenesis mediated by tumor microenvironment cells was significantly inhibited in the present of bufalin. The results demonstrated that the pro-angiogenic gene in HUVEC such as VEGF, PDGFA, E-selectin and P-selectin were downregulated by bufalin, and the downregulation was regulated by inhibiting the STAT3 pathway. Overexpression STAT3 could reverse the inhibitory effect of bufalin on angiogenesis. What is more, few reduction of angiogenesis when bufalin directly acted on tumor microenvironment cells. Conclusion Our findings demonstrate that bufalin suppresses tumour microenvironment-mediated angiogenesis by inhibiting the STAT3 signaling pathway of vascular endothelial cells, which reveals that bufalin may be used as a new anti-angiogenic adjuvant therapy medicine in the treatment of colorectal cancer.


2021 ◽  
Author(s):  
Shih-Ya Tseng ◽  
Hsien-Yuan Chang ◽  
Yi-Heng Li ◽  
Ting-Hsing Chao

Abstract Background: Cilostazol is an antiplatelet agent with vasodilating effects that functions by increasing the intracellular concentration of cyclic adenosine monophosphate. However, the effect of cilostazol on adiponectin is still unclear. Purpose: We investigated the effects of cilostazol on adiponectin/adiponectin receptors and the Sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signaling pathway to prevent high glucose (HG)-induced impairment of angiogenesis in vitro and in vivo. Methods and Results: Human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) were cocultured in HG conditions. Adiponectin concentrations in the supernatant were significantly increased when HASMCs were treated with cilostazol but not significantly changed when only HUVECs were treated with cilostazol. Cilostazol treatment restored the expression of the adipoR1 and SIRT1 proteins and upregulated the phosphorylation of AMPKa1 in the HUVECs treated with HG but not adipoR2. Cilostazol prevented apoptosis and stimulated proliferation, chemotactic motility and capillary-like tube formation in HG-treated HUVECs through the adipoR1/AMPK/SIRT1 signaling pathway. In cilostazol-treated mice, recovery of the blood flow ratio after hindlimb ischemia and circulating CD34+CD45dim cells were significantly attenuated by adipoR1 knockdown but not adipoR2 knockdown. The expression of SIRT1, phosphorylation of AMPKa1/acetyl-CoA carboxylase and Akt/endothelial nitric oxide synthase in ischemic muscles were significantly attenuated by gene knockdown of adipoR1. Conclusions: Cilostazol prevents HG-induced endothelial dysfunction in vascular endothelial cells and enhances angiogenesis in hyperglycemic mice by upregulating the expression of adiponectin/adipoR1 and its SIRT1/AMPK downstream signaling pathway.


Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 32 ◽  
Author(s):  
Shinichiro Nishimi ◽  
Takeo Isozaki ◽  
Kuninobu Wakabayashi ◽  
Hiroko Takeuchi ◽  
Tsuyoshi Kasama

A disintegrin and metalloprotease 15 (ADAM15) is involved in several malignancies. In this study, we investigated the role of ADAM15 in rheumatoid arthritis (RA) angiogenesis. Soluble ADAM15 (s-ADAM15) in serum from RA and normal (NL) subjects was measured using ELISA. To determine membrane-anchored ADAM15 (ADAM15) expression in RA synovial tissues, immunohistochemistry was performed. To examine the role of ADAM15 in angiogenesis, we performed in vitro Matrigel assays and monocyte adhesion assays using human umbilical vein endothelial cells (HUVECs) transfected with ADAM15 siRNA. Finally, to investigate whether angiogenic mediators were affected by ADAM15, cytokines in ADAM15 siRNA-transfected HUVEC-conditioned medium were measured. ADAM15 was significantly higher in RA serum than in NL serum. ADAM15 was also expressed on RAST endothelial cells. ADAM15 siRNA-treated HUVECs had decreased EC tube formation in response to RA synovial fluids compared with non-treated HUVECs. The adhesion index of ADAM15 siRNA-transfected HUVECs was significantly lower than the adhesion index of control siRNA-transfected HUVECs. ENA-78/CXCL5 and ICAM-1 were decreased in tumor necrosis factor (TNF)-α-stimulated ADAM15 siRNA-transfected HUVEC-conditioned medium compared with TNF-α-stimulated control siRNA-transfected HUVEC-conditioned medium. These data show that ADAM15 plays a role in RA angiogenesis, suggesting that ADAM15 might be a potential target in inflammatory diseases such as RA.


Sign in / Sign up

Export Citation Format

Share Document