scholarly journals Formulation, Development and Assessment of Novel Phyto-Elastosomes Loaded with Devil’s Claw Extract

Author(s):  
Pascal Ntemi ◽  
Roderick B Walker ◽  
Sandile Khamanga

Abstract Background: Management of arthritis requires frequent administration of medications at high doses that may lead to unwanted side effects and diminished patient adherence to the therapy. Devil’s claw extract, a herbal medicine from the Kalahari sands possess similar therapeutic efficacy with less side effects as the commercialized NSAIDs. The objectives of this study were to formulate, develop and assess novel phyto-elastosomes loaded with Devil’s claw extract in order to combat the toxicity levels associated with Devil’s claw and enhance penetration of harpagoside to intended targeted site.Methods: Screening studies were undertaken to determine the ideal amount of Tween® 80, cholesterol, ethanol, diacetyl phosphate and the pH of the hydration medium necessary to produce stable Devil’s claw-loaded phyto-elastosomes. Parameters monitored were particle size, polydispersity index, zeta potential, entrapment efficiency and deformability index.Results: The use of 20 % v/v ethanol was sufficient to produce novel phyto-elastosomes capable of deforming with minimal size alterations. Hydration of thin films in acidic solution produced phyto-elastosomal dispersions with high entrapment efficiency. The presence of cholesterol impeded harpagoside entrapment and increased cholesterol content affected the stability of vesicles by causing agglomeration. Conversely, increasing Tween® 80 concentration promoted harpagoside entrapment. Diacetyl phosphate promoted the stability of vesicle through charge induction.Conclusions: Development of Devil’s claw loaded phyto-elastosomes is useful in ensuring harpagoside reach the target site of action in arthritis-affected patients. Incorporation of these elastic vesicles in transdermal dosage forms may significantly improve the management of arthritis in the near future.

2021 ◽  
Author(s):  
Anna Blakney

The global COVID-19 pandemic has brought tremendous momentum to the field of messenger RNA (mRNA) vaccines. The advantages of this vaccine platform, such as rapid development and high efficacy, resulted in mRNA vaccines being the first approved vaccines against COVID-19. Looking forward to the development of future vaccines, how can we make RNA vaccines even better? While improvements in the stability of the formulation and cost of the vaccine are inevitable, one of the main challenges is lowering the dose of RNA in order to avoid side effects associated with high doses of RNA. One way to do this is by using self-amplifying RNA (saRNA), a type of mRNA that encodes a replicase that copies the original strand of RNA once it’s in the cell. Here, we discuss the origins of saRNA, how it works in comparison to mRNA, current challenges in the field and the future of saRNA vaccines.


Author(s):  
Phan Thi Nghia ◽  
Tran Thi Hai Yen ◽  
Vu Thi Thu Giang

This study develops the in-house specifications of self-nanoemulsifying drug delivery system (SNEDDS) containing rosuvastatin based on the following criteria: description, identification, droplet size (≤200 nm) and polydiversity index (not more than 0.3), drug proportion in the oil phase (≥ 90.0%), assay (≥ 95.0% and ≤105.0% of the labeled amount of rosuvastatin (C22H28FN3O6S). The criteria were validated and the results were suitable for identification and determination of rosuvastatin in SNEDDS. Additionally, the results of the stability study show that the rosuvastatin SNEDDS met the criteria of description, droplet size, PDI, assay and drug rate in the oil phase for 12-month storage under the long-term condition (12 months) and 6 months on accelerated condition. Keywords Rosuvastatin, SNEDDS, specification, droplet size, entrapment efficiency. References [1] A. Luvai, W. Mbagaya, A.S. Hall, I.H. Barth, Rosuvastatin: A Review of the Pharmacology and Clinical Effectiveness in Cardiovascular Disease, Clinical Medicine Insights: Cardiology 6 (2012) 17–33. https://doi.org/10.4137/CMC.S4324. [2] K. Balakumar, C.V. Raghavan, N.T. Selvan, R.H. Prasad, S. Abdu, Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation, Colloids and Surfaces B: Biointerfaces. 112 (2013) 337–343. http://dx.doi.org/10.1016/j.colsurfb.2013.08.025. [3] S. Elkadi, S. Elsamaligy, S. Al-Suwayeh, H. Mahmoud, The Development of Self-nanoemulsifying Liquisolid Tablets to Improve the Dissolution of Simvastatin, American Association of Pharmaceutical Scientists 18(7) (2017) 2586–2597. https://doi.org/10.1208/s12249-017-0743-z. [4] D. Patel, K.K. Sawant, Self Micro-Emulsifying Drug Delivery System: Formulation Development and Biopharmaceutical Evaluation of Lipophilic Drugs, Current Drug Delivery 6 (2009) 419–424. https://doi.org/10.2174/156720109789000519. [5] S.D. Maurya, R.K.K. Arya, G Rajpal, R.C. Dhakar, Self-micro emulsifying drug delivery systems (SMEDDS): A review on physico-chemical and biopharmaceutical aspects, Journal of Drug Delivery and Therapeutics 7(3) (2017) 55–65. https://doi.org/10.22270/jddt.v7i3.1453.[6] P. Borman, D. Elder, Q2(R1) Validation of analytical procedures: text and methodology, in: A. Teasdale, D. Elder, R.W. Nims (Eds), ICH quality guidelines: an implementation guide, John Wiley & Sons Inc., Hoboken, 2018, pp. 127-166. [7] United States Pharmacopoeia 41, rosuvastatin tablets monograph.          


Parasitology ◽  
1996 ◽  
Vol 113 (2) ◽  
pp. 111-121 ◽  
Author(s):  
H. Wen ◽  
R. R. C. New ◽  
M. Muhmut ◽  
J. H. Wang ◽  
Y. H. Wang ◽  
...  

SUMMARYEncapsulation of the benzimidazole albendazole in multilamellar liposomes results in a preparation in which this normally insoluble anti-hydatid drug is well solublilized in aqueous media. The high entrapment efficiency observed (75–87%) and the stability of the formulation make this a promising delivery vehicle for improved chemotherapy with albendazole. In particular, the high degree of association with phospholipid may give rise to increased oral bioavailability. Oral adminisration of albendazole in liposomes led to increased concentration and/or altered metabolism of albendazole sulphoxide (ABZSX) in liver and/or plasma in non-infected Wistar rats. Results from experiments using cotton rats (Sigmodon hispidus) infected with metacestodes of Echinococcus multilocularis show that entrapment within liposomes clearly increases the uptake of albendazole via the oral route. This was reflected by increased levels of albendazole and the two major metabolites in plasma, liver and cyst homogenate when a dose of liposomal albendazole (35 mg/kg) was given orally compared to free albendazole at 50 mg/kg. There was a 75–94% reduction in biomass of the metacestode and a significant increase in survival time for the animals treated with liposome entrapped albendazole. A clear difference in distribution of albendazole and its metabolites in the liver and the metacestode tissues in the presence of cimetidine indicated that the latter has a profound effect on the metabolism of albendazole. There appeared to be a synergistic interaction between albendazole and cimetidine, since the metabolism of albendazole was markedly altered in the combined cimetidine/liposome–albendazole group, and higher therapeutic effect was observed. These findings indicate potential both for improvement of treatment of larval E. multilocularis infection and for reduction of albendazole dose levels.


2021 ◽  
pp. 109158182110437
Author(s):  
Matt D. Saunders

The main considerations for the development of a formulation for preclinical safety assessment testing are explored. Intravenous, inhalation, oral and dermal dosing are given focus and although different dose routes do present their own individual challenges there are common themes that emerge. In each case it is necessary to maximise exposure to achieve high doses to satisfy regulatory requirements for safety assessment testing. This often involves producing formulations that are at the limits of solubility and maximum volumes possible for administration to different test species by the chosen route. It is concluded that for all routes it is important to thoroughly explore the stability of the test item in the proposed formulation matrix well ahead of dosing any animals, giving careful consideration to which excipients are used and what their underlying toxicity profile may be for the relevant preclinical species. In addition, determining the maximum achievable concentrations and weighing that against the maximum volumes that can be given by the chosen route in all the test species at an early stage will also give a read on whether it would be theoretically possible to achieve suitably high enough doses to support clinical work. Not doing so can cause delays in the development programme and may have ethical repercussions.


Lopinavir is the anti HIV drug which is used to treat the HIV-1 infection. In this study we used the single lopinavir drug to formulate the polymeric micelle. This study was done with the two main objectives as Objective:first to enhance the solubility and bioavailability of the BCS class IV drug and second to avoid the combination of lopinavir rand ritonavir and use single lopinavir to preparation of polymeric micelle also to avoid the disadvantages related to the oral administration. Method:The different pluronic (F188 &F127) and co-solvent (Tween80) were chosen & the micelles were prepared by using different Drug: polymer ratio with or without cosolvent and drug Lopinavir. Formulations were been characterized by critical micelle concentration(CMC) value, micellesize,DSC, XRD, loading efficiency, % drug loading and stability.Result:Mixed micelle (hydrophobic &hydrophilic) obtained from optimized batch shows the highest entrapment of 29%with the pluronic F68 with the use of co-solvent and the vesicle size of 0.156µm the DSC, FTIR, XRD study was also done for lopinavir and optimized formulation .Conclusion: The pluronic F68 with the co-solvent showed fairly high entrapment efficiency, loading capacity than the mixed Pluronic in combination


1961 ◽  
Vol 38 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Christian Lauritzen ◽  
Semih Velibese

ABSTRACT A description is given of experimental investigations and preliminary clinical experience with the long-acting oestriol compound polyoestriol phosphate – a water-soluble polymere of oestriol and phosphoric acid. The compound seems to exert all the physiologically important effects of oestriol. Even with high doses the hormone causes no proliferation of the endometrium and no withdrawal bleeding. It has no untoward effect on metabolism. It decreases slightly the cholesterol concentration (to the extent of ⅓–⅕ of the effect produced by long-acting oestradiol esters). The compound has a wide therapeutic range. No side-effects have been observed. Doses of 10 mg or more have a prolonged duration. Additional prolongation of the effect is largely dependent on dosage. To ensure an effect lasting for 4 weeks 40 mg polyoestriol phosphate (corresponding with 30 mg oestriol) is required – an amount which roughly corresponds with physiological quantitative data. The compound, which involves an interesting new principle of prolongation, was most effectively used in the treatment of menopausal symptoms and genital organic disorders. For these indications it can be recommended without reservation.


Author(s):  
Anamika Saxena Saxena ◽  
Santosh Kitawat ◽  
Kalpesh Gaur ◽  
Virendra Singh

The main goal of any drug delivery system is to achieve desired concentration of the drug in blood or tissue, which is therapeutically effective and nontoxic for a prolonged period. Various attempts have been made to develop gastroretentive delivery systems such as high density system, swelling, floating system. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. Gastric emptying is a complex process and makes in vivo performance of the drug delivery systems uncertain. In order to avoid this variability, efforts have been made to increase the retention time of the drug-delivery systems for more than 12 hours. The floating or hydrodynamically controlled drug delivery systems are useful in such application. Background of the research: Diltiazem HCL (DTZ), has short biological half life of 3-4 h, requires rather high frequency of administration. Due to repeated administration there may be chances of patient incompliance and toxicity problems. Objective: The objective of study was to develop sustained release alginate beads of DTZ for reduction in dosing frequency, high bioavailability and better patient compliance. Methodology: Five formulations prepared by using different drug to polymer ratios, were evaluated for relevant parameters and compared. Alginate beads were prepared by ionotropic external gelation technique using CaCl2 as cross linking agent. Prepared beads were evaluated for % yield, entrapment efficiency, swelling index in 0.1N HCL, drug release study and SEM analysis. In order to improve %EE and drug release, LMP and sunflower oil were used as copolymers along with sodium alginate.


2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


1956 ◽  
Vol 2 (3) ◽  
pp. 145-159 ◽  
Author(s):  
Joseph T Anderson ◽  
Ancel Keys

Abstract 1. Methods are described for the separation, by paper electrophoresis and by cold ethanol, of α- and β-lipoproteins in 0.1 ml. of serum, with subsequent analysis of cholesterol in the separated portions. 2. It is shown that both methods of separation yield separated fractions containing substantially the same amounts of cholesterol. 3. Detailed data are given on the errors of measurement for total cholesterol and for cholesterol in the separated lipoprotein fractions. 4. Studies are reported on the stability of cholesterol in stored serum and on paper electrophoresis strips. It is shown that simple drying on filter paper causes no change in cholesterol content and yields a product that is stable for many weeks at ordinary room temperature. 5. The sources of variability in human serum cholesterol values are examined and it is shown that spontaneous intraindividual variability is a much greater source of error than the errors of measurement with these methods.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 271
Author(s):  
Lucía Yepes-Molina ◽  
José A. Hernández ◽  
Micaela Carvajal

Pomegranate extract (PG-E) has been reported to exert a protective effect on the skin due to its antioxidant activity. Ingredients rich in phenolic compounds are unstable in extract solutions, and, therefore, the use of a suitable nanosystem to encapsulate this type of extract could be necessary in different biotechnological applications. Thus, we investigated the capacity of Brassica oleracea L. (cauliflower) inflorescence vesicles (CI-vesicles) to encapsulate PG-E and determined the stability and the antioxidant capacity of the system over time. In addition, the protective effect against UV radiation and heavy metals in HaCaT cells was also tested. The CI-vesicles had an entrapment efficiency of around 50%, and accelerated stability tests did not show significant changes in the parameters tested. The results for the HaCaT cells showed the non-cytotoxicity of the CI-vesicles containing PG-E and their protection against heavy metals (lead acetate and mercuric chloride) and UV-B radiation through a reduction of oxidative stress. The reduction of the percentage of deleted mtDNA (mtDNA4977, “common deletion”) in UV-treated HaCaT cells due to the presence of CI-vesicles containing PG-E indicated the mechanism of protection. Therefore, the effects of CI-vesicles loaded with PG-E against oxidative stress support their utilization as natural cosmeceuticals to protect skin health against external damage from environmental pollution and UV radiation.


Sign in / Sign up

Export Citation Format

Share Document