scholarly journals N6-methyladenosine-mediated Nrf2 Regulates the Defense Mechanism Against PM2.5-induced Pulmonary Fibrosis

Author(s):  
Ding Ji ◽  
Chenxi Hu ◽  
Jie Ning ◽  
Xiaoling Ying ◽  
Haiqing Zhang ◽  
...  

Abstract Background: It has been reported that particulate matter with an aerodynamic diameter of < 2.5 µm (PM2.5) could induce epithelial–mesenchymal transition (EMT)- and extracellular matrix (ECM)-related pulmonary fibrosis (PF). The transcription factor Nrf2 alleviated PM2.5-induced PF by antagonizing oxidative stress. The N6-methyladenosine (m6A) modifications play a significant role in the stress response. However, the effect of m6A modification on the mechanisms of Nrf2-mediated defense against PM2.5-induced PF remain unknown. Here, we investigated the role and the underlying molecular mechanisms of m6A methylation of Nrf2 mRNA in PM2.5-induced PF. Results: Male C57BL/6 mice were exposed to filtered air (FA), unfiltered air (UA) and concentrated air (CA)for 16 weeks. 16HBE cells were treated with 0, 50, or 100 µg/mL PM2.5 for 24 h. Our data showed that chronic PM2.5 exposure could induce fibrosis in lung and increase Nrf2 signals. In Nrf2 deficient cells, α-SMA expression was significantly upregulated whereas E-cadherin decreased compared with WT cells after PM2.5 treatment which implied the aggravated fibrosis. m6A methyltransferase METTL3 was upregulated after PM2.5 treatment. m6A-methylated RNA immunoprecipitation (MeRIP) and qRT-PCR results showed that METTL3 improved the m6A modification of Nrf2 mRNA in PM2.5-exposed 16HBE cells. MeRIP-Seq and single-base T3 ligase-based PCR results showed that the m6A-modified sites of Nrf2 mRNA were 1317, 1376, and 935 in lung of mice after PM2.5 exposure. RIP results suggested that the m6A binding proteins YTHDF1/IGF2BP1 promoted Nrf2 translation by binding to Nrf2 mRNA m6A residues.Conclusions: Our results revealed the mechanism by which m6A regulated the activities of the Nrf2-mediated signaling pathway against PM2.5-induced PF.

2020 ◽  
Author(s):  
Guichuan Huang ◽  
Jing Zhang ◽  
Gang Qing ◽  
Daishun Liu ◽  
Xin Wang ◽  
...  

Abstract Background:Pulmonary fibrosis (PF) is a progressive and lethal disease with poor prognosis. S100A2 plays an important role in the progression of cancer. However, the role of S100A2 in PF has not been reported yet. In this study, we explored the potential role of S100A2 in PF and its potential molecular mechanisms. Methods: First, we analyzed S100A2 expression of patients with PF by retrieving RNA-sequencing datasets from Gene Expression Omnibus (GEO) database. Next, we detected the expression of S100A2 in patients with PF using quantitative real time PCR (qRT-PCR). Then, S100A2 expression was determined with or without the treatment of transforming growth factor-β1 (TGF-β1) in A549 cells. Epithelial-mesenchymal transition (EMT) biomarkers, including E-cadherin,vimentin, and α smooth muscle actin (α-SMA), were identified using qRT-PCR and western blot. Finally, the relevant signalling pathway indicators were detected by western blot. Results: Increased expression of S100A2 was first observed in lung tissues of PF patients. Meanwhile, we found that downregulation of S100A2 inhibited the TGF-β1-induced EMT in A549 cells. Mechanically, TGF-β1 up-regulated β-catenin and phosphorylation of GSK-3β, which was blocked by silencing S100A2 in vitro. Conclusion: These findings demonstrate that downregulation of S100A2 alleviate pulmonary fibrosis via inhibiting EMT. S100A2 is a promising potential target for further understanding the mechanism and developing strategy for the treatment of PF and other EMT-associated disease.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fan Yang ◽  
Zhen-feng Hou ◽  
Hao-yue Zhu ◽  
Xiao-xuan Chen ◽  
Wan-yang Li ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by fibroblast proliferation and extracellular matrix remodeling; however, the molecular mechanisms underlying its occurrence and development are not yet fully understood. Despite it having a variety of beneficial pharmacological activities, the effects of catalpol (CAT), which is extracted from Rehmannia glutinosa, in IPF are not known. In this study, the differentially expressed genes, proteins, and pathways of IPF in the Gene Expression Omnibus database were analyzed, and CAT was molecularly docked with the corresponding key proteins to screen its pharmacological targets, which were then verified using an animal model. The results show that collagen metabolism imbalance, inflammatory response, and epithelial-mesenchymal transition (EMT) are the core processes in IPF, and the TGF-β1/Smad3 and Wnt/β-catenin pathways are the key signaling pathways for the development of pulmonary fibrosis. Our results also suggest that CAT binds to TGF-βR1, Smad3, Wnt3a, and GSK-3β through hydrogen bonds, van der Waals bonds, and other interactions to downregulate the expression and phosphorylation of Smad3, Wnt3a, GSK-3β, and β-catenin, inhibit the expression of cytokines, and reduce the degree of oxidative stress in lung tissue. Furthermore, CAT can inhibit the EMT process and collagen remodeling by downregulating fibrotic biomarkers and promoting the expression of epithelial cadherin. This study elucidates several key processes and signaling pathways involved in the development of IPF, and suggests the potential value of CAT in the treatment of IPF.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ben Yue ◽  
Chenlong Song ◽  
Linxi Yang ◽  
Ran Cui ◽  
Xingwang Cheng ◽  
...  

Abstract Background As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. Methods qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. Results Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the “reader” protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. Conclusions Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.


2019 ◽  
Vol 12 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Lisha Xie ◽  
Tao Jiang ◽  
Ailan Cheng ◽  
Ting Zhang ◽  
Pin Huang ◽  
...  

Background: Alterations in microRNAs (miRNAs) are related to the occurrence of nasopharyngeal carcinoma (NPC) and play an important role in the molecular mechanism of NPC. Our previous studies show low expression of 14-3-3σ (SFN) is related to the metastasis and differentiation of NPC, but the underlying molecular mechanisms remain unclear. Methods: Through bioinformatics analysis, we find miR-597 is the preferred target miRNA of 14-3-3σ. The expression level of 14-3-3σ in NPC cell lines was detected by Western blotting. The expression of miR-597 in NPC cell lines was detected by qRT-PCR. We transfected miR-597 mimic, miR-597 inhibitor and 14-3-3σ siRNA into 6-10B cells and then verified the expression of 14-3-3σ and EMT related proteins, including E-cadherin, N-cadherin and Vimentin by western blotting. The changes of migration and invasion ability of NPC cell lines before and after transfected were determined by wound healing assay and Transwell assay. Results: miR-597 expression was upregulated in NPC cell lines and repaired in related NPC cell lines, which exhibit a potent tumor-forming effect. After inhibiting the miR-597 expression, its effect on NPC cell line was obviously decreased. Moreover, 14-3-3σ acts as a tumor suppressor gene and its expression in NPC cell lines is negatively correlated with miR-597. Here 14-3-3σ was identified as a downstream target gene of miR-597, and its downregulation by miR-597 drives epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of NPC. Conclusion: Based on these findings, our study will provide theoretical and experimental evidences for molecular targeted therapy of NPC.


2020 ◽  
Vol 21 ◽  
Author(s):  
Yanhong Liu ◽  
Hongguang Nie ◽  
Yan Ding ◽  
Yapeng Hou ◽  
Kejun Mao ◽  
...  

: Pulmonary fibrosis (PF) is the most common chronic, progressive interstitial lung disease, mainly occurring in the elderly, with a median survival of 2-4 years after diagnosis. Its high mortality rate attributes to the delay in diagnosis due to its generic symptoms, and more importantly, to the lack of effective treatments. MicroRNAs (miRNAs) are a class of small non-coding RNAs that involve in many essential cellular processes, including extracellular matrix remodeling, alveolar epithelial cell apoptosis, epithelial-mesenchymal transition, etc. We summarized the dysregulated miRNAs in TGF-β signaling pathway-mediated PF in recent years with dual effects, such as anti-fibrotic let-7 family and pro-fibrotic miR-21 members. Therefore, this review will set out the latest application of miRNAs to provide a new direction for PF treatment.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 77-96
Author(s):  
T. Jeethy Ram ◽  
Asha Lekshmi ◽  
Thara Somanathan ◽  
K. Sujathan

Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1074
Author(s):  
Giuseppina Divisato ◽  
Silvia Piscitelli ◽  
Mariantonietta Elia ◽  
Emanuela Cascone ◽  
Silvia Parisi

Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial–mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial–mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.


2021 ◽  
Vol 43 (2) ◽  
pp. 900-916
Author(s):  
Anna Zubrzycka ◽  
Monika Migdalska-Sęk ◽  
Sławomir Jędrzejczyk ◽  
Ewa Brzeziańska-Lasota

Endometriosis is a chronic gynecological disease defined by the presence of endometrial-like tissue found outside the uterus, most commonly in the peritoneal cavity. Endometriosis lesions are heterogenous but usually contain endometrial stromal cells and epithelial glands, immune cell infiltrates and are vascularized and innervated by nerves. The complex etiopathogenesis and heterogenity of the clinical symptoms, as well as the lack of a specific non-invasive diagnostic biomarkers, underline the need for more advanced diagnostic tools. Unfortunately, the contribution of environmental, hormonal and immunological factors in the disease etiology is insufficient, and the contribution of genetic/epigenetic factors is still fragmentary. Therefore, there is a need for more focused study on the molecular mechanisms of endometriosis and non-invasive diagnostic monitoring systems. MicroRNAs (miRNAs) demonstrate high stability and tissue specificity and play a significant role in modulating a range of molecular pathways, and hence may be suitable diagnostic biomarkers for the origin and development of endometriosis. Of these, the most frequently studied are those related to endometriosis, including those involved in epithelial–mesenchymal transition (EMT), whose expression is altered in plasma or endometriotic lesion biopsies; however, the results are ambiguous. Specific miRNAs expressed in endometriosis may serve as diagnostics markers with prognostic value, and they have been proposed as molecular targets for treatment. The aim of this review is to present selected miRNAs associated with EMT known to have experimentally confirmed significance, and discuss their utility as biomarkers in endometriosis.


Oncogene ◽  
2021 ◽  
Author(s):  
Jinguo Zhang ◽  
Wencai Guan ◽  
Xiaolin Xu ◽  
Fanchen Wang ◽  
Xin Li ◽  
...  

AbstractThe primary chemotherapy of ovarian cancer (OC) often acquires chemoresistance. Sorcin (SRI), a soluble resistance-related calcium-binding protein, has been reported to be an oncogenic protein in cancer. However, the molecular mechanisms of SRI regulation and the role and aberrant expression of SRI in chemoresistant OC remain unclear. Here, we identified SRI as a key driver of paclitaxel (PTX)-resistance and explored its regulatory mechanism. Using transcriptome profiles, qRT-PCR, proteomics, Western blot, immunohistochemistry, and bioinformatics analyses, we found that SRI was overexpressed in PTX-resistant OC cells and the overexpression of SRI was related to the poor prognosis of patients. SRI was a key molecule required for growth, migration, and PTX-resistance in vitro and in vivo and was involved in epithelial–mesenchymal transition (EMT) and stemness. Mechanistic studies showed that miR-142-5p directly bound to the 3ʹ-UTR of SRI to suppress its expression, whereas a transcription factor zinc-finger E-box binding homeobox 1 (ZEB1) inhibited the transcription of miR-142-5p by directly binding to the E-box fragment in the miR-142 promoter region. Furthermore, ZEB1 was negatively regulated by SRI which physically interacted with Smad4 to block its translocation from the cytosol to the nucleus. Taken together, our findings unveil a novel homeostatic loop of SRI that drives the PTX-resistance and malignant progression via Smad4/ZEB1/miR-142-5p in human OC. Targeting this SRI/Smad4/ZEB1/miR-142-5p loop may reverse the PTX-resistance.


Sign in / Sign up

Export Citation Format

Share Document