scholarly journals METTL14 Suppresses Pyroptosis and Diabetic Cardiomyopathy by Down-Regulating TINCR lncRNA

Author(s):  
Liping Meng ◽  
Hui Lin ◽  
Xingxiao Huang ◽  
Jingfan Wen ◽  
Shengjie Wu

Abstract Background: N6-methyladenosine (m6A) is one of the most important epigenetic regulation of RNAs, such as lncRNAs. However, the underlying regulatory mechanism of m6A in diabetic cardiomyopathy (DCM) is very limited. In this study, we sought to define the role of METTL14-mediated m6A modification in pyroptosis and DCM progression.Methods: DCM rat model was established and qRT-PCR, western blot and immunohistochemistry (IHC) were used to detect the expression of METTL14 and TINCR. Gain-and-loss functional experiments were performed to define the role of METTL14-TINCR-NLRP3 axis in pyroptosis and DCM. RNA pulldown and RNA immunoprecipitation (RIP) assays were carried out to verify the underlying interaction.Results: In vivo and in vitro studies showed that pyroptosis was tightly involved in DCM progression. METTL14 was downregulated in cardiomyocytes and hear tissues of DCM rat tissues. Functionally, METTL14 suppressed pyroptosis and DCM via downregulating lncRNA TINCR, which further decreased the expression of key pyroptosis-related protein, NLRP3. Mechanistically, METTL14 increased m6A methylation level of TINCR gene, resulting in its downregulation. Moreover, the m6A reader protein YTHDF2 was essential for m6A methylation and mediated the degradation of TINCR. Finally, TINCR positively regulated NLRP3 through increasing its mRNA stability.Conclusions: Our work revealed the novel role of METTL14-mediated m6A methylation and lncRNA regulation in pyroptosis and DCM, which could help extend our understanding the epigenetic regulation of pyroptosis in DCM progression.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Liping Meng ◽  
Hui Lin ◽  
Xingxiao Huang ◽  
Jingfan Weng ◽  
Fang Peng ◽  
...  

AbstractN6-methyladenosine (m6A) is one of the most important epigenetic regulation of RNAs, such as lncRNAs. However, the underlying regulatory mechanism of m6A in diabetic cardiomyopathy (DCM) is very limited. In this study, we sought to define the role of METTL14-mediated m6A modification in pyroptosis and DCM progression. DCM rat model was established and qRT-PCR, western blot, and immunohistochemistry (IHC) were used to detect the expression of METTL14 and TINCR. Gain-and-loss functional experiments were performed to define the role of METTL14-TINCR-NLRP3 axis in pyroptosis and DCM. RNA pulldown and RNA immunoprecipitation (RIP) assays were carried out to verify the underlying interaction. Our results showed that pyroptosis was tightly involved in DCM progression. METTL14 was downregulated in cardiomyocytes and hear tissues of DCM rat tissues. Functionally, METTL14 suppressed pyroptosis and DCM via downregulating lncRNA TINCR, which further decreased the expression of key pyroptosis-related protein, NLRP3. Mechanistically, METTL14 increased m6A methylation level of TINCR gene, resulting in its downregulation. Moreover, the m6A reader protein YTHDF2 was essential for m6A methylation and mediated the degradation of TINCR. Finally, TINCR positively regulated NLRP3 by increasing its mRNA stability. To conclude, our work revealed the novel role of METTL14-mediated m6A methylation and lncRNA regulation in pyroptosis and DCM, which could help extend our understanding the epigenetic regulation of pyroptosis in DCM progression.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ben Yue ◽  
Chenlong Song ◽  
Linxi Yang ◽  
Ran Cui ◽  
Xingwang Cheng ◽  
...  

Abstract Background As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. Methods qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. Results Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the “reader” protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. Conclusions Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jong Bong Lee ◽  
Masar Radhi ◽  
Elena Cipolla ◽  
Raj D. Gandhi ◽  
Sarir Sarmad ◽  
...  

Abstract Although adenosine and its analogues have been assessed in the past as potential drug candidates due to the important role of adenosine in physiology, only little is known about their absorption following oral administration. In this work, we have studied the oral absorption and disposition pathways of cordycepin, an adenosine analogue. In vitro biopharmaceutical properties and in vivo oral absorption and disposition of cordycepin were assessed in rats. Despite the fact that numerous studies showed efficacy following oral dosing of cordycepin, we found that intact cordycepin was not absorbed following oral administration to rats. However, 3′-deoxyinosine, a metabolite of cordycepin previously considered to be inactive, was absorbed into the systemic blood circulation. Further investigation was performed to study the conversion of 3′-deoxyinosine to cordycepin 5′-triphosphate in vitro using macrophage-like RAW264.7 cells. It demonstrated that cordycepin 5′-triphosphate, the active metabolite of cordycepin, can be formed not only from cordycepin, but also from 3′-deoxyinosine. The novel nucleoside rescue metabolic pathway proposed in this study could be responsible for therapeutic effects of adenosine and other analogues of adenosine following oral administration. These findings may have importance in understanding the physiology and pathophysiology associated with adenosine, as well as drug discovery and development utilising adenosine analogues.


Blood ◽  
2009 ◽  
Vol 113 (26) ◽  
pp. 6669-6680 ◽  
Author(s):  
Aldo M. Roccaro ◽  
Antonio Sacco ◽  
Brian Thompson ◽  
Xavier Leleu ◽  
Abdel Kareem Azab ◽  
...  

Abstract Detailed genomic studies have shown that cytogenetic abnormalities contribute to multiple myeloma (MM) pathogenesis and disease progression. Nevertheless, little is known about the characteristics of MM at the epigenetic level and specifically how microRNAs regulate MM progression in the context of the bone marrow milieu. Therefore, we performed microRNA expression profiling of bone marrow derived CD138+ MM cells versus their normal cellular counterparts and validated data by qRT-PCR. We identified a MM-specific microRNA signature characterized by down-expression of microRNA-15a/-16 and overexpression of microRNA-222/-221/-382/-181a/-181b (P < .01). We investigated the functional role of microRNA-15a and -16 and showed that they regulate proliferation and growth of MM cells in vitro and in vivo by inhibiting AKT serine/threonine-protein-kinase (AKT3), ribosomal-protein-S6, MAP-kinases, and NF-κB-activator MAP3KIP3. Moreover, miRNA-15a and -16 exerted their anti-MM activity even in the context of the bone marrow milieu in vitro and in vivo. These data indicate that microRNAs play a pivotal role in the biology of MM and represent important targets for novel therapies in MM.


1992 ◽  
Vol 1 (3) ◽  
pp. 171-175
Author(s):  
Mohamad Hamood ◽  
Francis Corazza ◽  
Pierre Francois Bluche ◽  
Hassan El Teraifi ◽  
Pierre Fondu

It was demonstrated previously that mice undergoing an inflammatory reaction induced by subcutaneous (SC) implantation of copper rods, produce humoral factors that initially enhance, but subsequently inhibit, diffusion chamber (DC) granulopoiesis. This provided evidence that granulopoiesis is under the control of both humoral stimulators and inhibitors. In order to test the granulopoietic regulatory mechanism in leukaemic mice, we investigated the regulatory role of granulopoietic humoral inhibitors during in vivo granulopoiesis. We noticed that mice suffering from acute myeloid leukaemia (AML) are unable to augment the production of these humoral inhibitory factors when acute inflammation is induced, since no change in DC cell content was observed with or without prior inflammation. Moreover, unlike healthy mice, the serum of leukaemic mice withdrawn during the inhibition phase of acute inflammation did not show any inhibitory activity toward granulocyte—monocyte (GM) colony growth in vitro. Our results also show that increased levels of normal humoral inhibitors do not influence the proliferation and/or differentiation of leukaemic cells implanted in diffusion chamber cultures.


2019 ◽  
Vol 26 (7) ◽  
pp. 643-658 ◽  
Author(s):  
Meng Ji ◽  
Yanli Yao ◽  
Anan Liu ◽  
Ligang Shi ◽  
Danlei Chen ◽  
...  

Pancreatic neuroendocrine neoplasms (pNENs) are endocrine tumors arising in pancreas and is the most common neuroendocrine tumors. Mounting evidence indicates lncRNA H19 could be a determinant of tumor progression. However, the expression and mechanism of H19 and the relevant genes mediated by H19 in pNENs remain undefined. Microarray analysis was conducted to identify the differentially expressed lncRNAs in pNENs. H19 expression was analyzed in 39 paired pNEN tissues by qPCR. The biological role of H19 was determined by functional experiments. RNA pulldown, mass spectroscopy and RNA immunoprecipitation were performed to confirm the interaction between H19 and VGF. RNA-seq assays were performed after knockdown H19 or VGF. H19 was significantly upregulated in pNEN tissues with malignant behaviors, and the upregulation predicted poor prognosis in pNENs. In vitro and in vivo data showed that H19 overexpression promoted tumor growth and metastasis, whereas H19 knockdown led to the opposite phenotypes. H19 interacted with VGF, which was significantly upregulated in pNENs, and higher VGF expression was markedly related to poor differentiation and advanced stage. Furthermore, VGF was downregulated when H19 was knocked down, and VGF promoted cell proliferation, migration and invasion. Mechanistic investigations revealed that H19 activated PI3K/AKT/CREB signaling and promoted pNEN progression by interacting with VGF. These findings indicate that H19 is a promising prognostic factor in pNENs with malignant behaviors and functions as an oncogene via the VGF-mediated PI3K/AKT/CREB pathway. In addition, our study implies that VGF may also serve as a candidate prognostic biomarker and therapeutic target in pNENs.


2020 ◽  
Author(s):  
Lining Huang ◽  
Xingming Jiang ◽  
Zhenglong Li ◽  
Jinglin Li ◽  
Xuan Lin ◽  
...  

Abstract Background: Cholangiocarcinoma (CCA) is a mortal cancer with high mortality, whereas the function and mechanism of occurrence and progression of CCA are still mysterious. Long non-coding RNAs (lncRNAs) could function as important regulators in carcinogenesis and cancer progression. Growing evidences have indicated that the novel lncRNA linc00473 plays an important role in cancer progression and metastasis. However, its function and molecular mechanism in CCA remain unknown. Methods: The linc00473 expression in CCA tissues and cell lines was analyzed using qRT-PCR. Gain- and loss-of-function experiments were conducted to investigate the biological functions of linc00473 both in vitro and in vivo. Insights into the underlying mechanisms of competitive endogenous RNAs (ceRNAs) were determined by bioinformatics analysis, dual-luciferase reporter assays, qRT-PCR arrays, RNA immunoprecipitation (RIP) and rescue experiments. Results: Linc00473 was highly expressed in CCA tissues and cell lines. Linc00473 knockdown inhibited CCA growth and metastasis. Furthermore, linc00473 acted as miR-506 sponge and regulated its target gene DDX5 expression. Rescue assays verified that linc00473 modulated the tumorigenesis of CCA by regulating miR-506. Conclusions: The data indicated that linc00473 played an oncogenic role in CCA growth and metastasis, and could serve as a novel molecular target for treating CCA.


2021 ◽  
Author(s):  
William C Carlquist ◽  
Eric N Cytrynbaum

The patterns formed both in vivo and in vitro by the Min protein system have attracted much interest because of the complexity of their dynamic interactions given the apparent simplicity of the component parts. Despite both the experimental and theoretical attention paid to this system, the details of the biochemical interactions of MinD and MinE, the proteins responsible for the patterning, are still unclear. For example, no model consistent with the known biochemistry has yet accounted for the observed dual role of MinE in the membrane stability of MinD. Until now, a statistical comparison of models to the time course of Min protein concentrations on the membrane has not been carried out. Such an approach is a powerful way to test existing and novel models that are difficult to test using a purely experimental approach. Here, we extract time series from previously published fluorescence microscopy time lapse images of in vitro experiments and fit two previously described and one novel mathematical model to the data. We find that the novel model, which we call the Asymmetric Activation with Bridged Stability Model, fits the time-course data best. It is also consistent with known biochemistry and explains the dual MinE role via MinE-dependent membrane stability that transitions under the influence of rising MinE to membrane instability with positive feedback. Our results reveal a more complex network of interactions between MinD and MinE underlying Min-system dynamics than previously considered.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bo Sun ◽  
Xianyu Zheng ◽  
Weilong Ye ◽  
Pengcheng Zhao ◽  
Guowu Ma

Objectives. The aim of this research was to uncover the biological role and mechanisms of LINC01303 in oral squamous cell carcinoma (OSCC). Materials and Methods. Real-time quantitative PCR (qRT-PCR) was used to determine LINC01303 expression in OSCC tissues. Subcellular distribution of LINC01303 was examined by nuclear/cytoplasmic RNA fractionation and FISH experiments. The role of LINC01303 in the growth of TSCCA and SCC-25 was examined by CCK-8 assay, colony formation, transwell invasion assay in vitro, and xenograft tumor experiment in vivo. Dual-luciferase reporter assay was used to verify the interaction between LINC01303 and miR-429. RNA pull‐down assay was used to discover miR-429‐interacted protein, which was further examined by qRT-PCR, western blot, and rescue experiments. Results. LINC01303 expression was higher in OSCC tissues compared with adjacent nontumor tissues. LINC01303 was found to be localized in the cytoplasm of OSCC cells. Knockdown of LINC01303 inhibited OSCC cell proliferation and invasion, whereas increasing the expression of LINC01303 showed the opposite effects. Furthermore, LINC01303 served as a miR-429 “sponge” and positively regulated ZEB1 expression. Moreover, LINC01303 promoted OSCC through miR-429/ZEB1 axis both in vivo and in vitro. Conclusions. LINC01303 plays an oncogenic role in OSCC and is a promising biomarker for OSCC patients.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Shi Chen ◽  
Long Huang ◽  
Ge Li ◽  
Funan Qiu ◽  
Yaodong Wang ◽  
...  

Abstract Previous studies suggest the tumor suppressor role of long non-coding RNA (lncRNA) STXBP5-AS1 in cervical and gastric cancer, but its expression pattern and functional mechanism are still elusive in pancreatic cancer (PC). Relative expression of STXBP5-AS1 in PC both in vivo and in vitro was analyzed by real-time PCR. IC50 of Gemcitabine was determined by the MTT assay. Cell proliferation in response to drug treatment was investigated by colony formation assay. Cell apoptosis was measured by both caspase-3 activity and Annexin V/PI staining. Cell invasion capacity was scored by the transwell assay in vitro, and lung metastasis was examined with the tail vein injection assay. Cell stemness was determined in vitro by sphere formation and marker profiling, respectively, and in vivo by limited dilution of xenograft tumor incidence. Subcellular localization of STXBP5-AS1 was analyzed with fractionation PCR. Association between STXBP5-AS1 and EZH2 was investigated by RNA-immunoprecipitation. The binding of EZH2 on ADGB promoter was analyzed by chromatin immunoprecipitation. The methylation was quantified by bisulfite sequencing. We showed downregulation of STXBP5-AS1 in PC associated with poor prognosis. Ectopic STXBP5-AS1 inhibited chemoresistance and metastasis of PC cells. In addition, STXBP5-AS1 compromised stemness of PC cells. Mechanistically, STXBP5-AS1 potently recruited EZH2 and epigenetically regulated neighboring ADGB transcription, which predominantly mediated the inhibitory effects of STXBP5-AS1 on stem cell-like properties of PC cells. Our study highlights the importance of the STXBP5-EZH2-ADGB axis in chemoresistance and stem cell-like properties of PC.


Sign in / Sign up

Export Citation Format

Share Document