scholarly journals A Facilely Synthesized Tourmaline-Biochar Composite For Enhanced Removal of Cr (VI) From Aqueous Solution

Author(s):  
Qi Lu ◽  
Siyi Huang ◽  
Xiaorui Ma

Abstract A tourmaline-biochar composite (TMBC) was facilely synthesized to effectively remove Cr (Ⅵ) from aqueous solution. The effects of different ratio (TM: BC) and pyrolysis temperature on TMBC adsorption performance were compared for optimal condition of TMBC preparation. The TMBC samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscope-energy dispersive spectrometer (SEM-EDS). The kinetics and thermodynamics were analyzed to investigate the sorption mechanism for removal of Cr (VI). The results showed that the proper pyrolysis temperature was 650℃, and the ratio of TM and BC was 1:3. SEM results showed that there are many pores in the biochar structure, which is helpful for tourmaline dispersion. The adsorption kinetics was fitted well by the pseudo-second-order model, indicating the sorption is related to chemical absorption. Freundlich adsorption isotherms suggested monolayer adsorption between Cr (Ⅵ) and TMBC, and the maximum adsorption capacity of TMBC for Cr (Ⅵ) was 53.10 mg/g at initial pH 4.0, which is more than twice higher than pristine TM (17.85 mg/g). Such adsorption mechanisms included water automatically polarized, ion exchange and electrode adsorption, among which the automatic polarization of water caused by tourmaline was the unique adsorption property of TMBC. So TMBC composite can be used as an economic adsorbent in the remediation of heavy metal pollution in water.

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5436-5449
Author(s):  
Chao Cao ◽  
Lupeng Shao ◽  
Lucian A. Lucia ◽  
Yu Liu

Magnetic lignin-based adsorbent (MLA) was successfully fabricated to remove methyl orange dye from aqueous solution. The synthesized MLA was characterized by means of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). In the process of adsorption, influence factors and recycling performance were considered, and the adsorption mechanisms such as isotherm and kinetics were investigated. The result showed that the equilibrium data was consisted with the Langmuir model with a maximum adsorption capacity of 85.0 mg/g. The adsorption kinetics followed a pseudo-second-order model. Based the adsorption performance, MLA showed good recyclability. Therefore, these results demonstrate that MLA could offer a great potential as an efficient and reusable adsorbent in the wastewater treatments.


2019 ◽  
Vol 37 (3-4) ◽  
pp. 185-204 ◽  
Author(s):  
Shaomin Gao ◽  
Wenwen Zhang ◽  
Zhaohui An ◽  
Shulin Kong ◽  
Donghui Chen

In this study, a magnetically separable Fe3O4/CeO2 (Fe/Ce) nanocomposite is synthesized by sol-precipitation method and characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive spectrometer , vibrating sample magnetometer, atomic absorption spectrometer, and zeta potential measurements. The Fe/Ce is used as sorbent to adsorb anionic dye of Acid Black 210 (AB210) from aqueous solutions, and the maximum adsorption capacity is about 90.50 mg/g, which is six times higher than that of the commercial CeO2. Dependence of absorption performance on essential factors, such as initial dye concentration, temperature and initial pH, are experimentally examined. The result shows that the adsorption kinetic of Fe/Ce follows pseudo-second-order model and the adsorption isotherm is well described by the Langmuir adsorption model. Furthermore, the thermodynamic analysis indicates that the adsorption of Fe/Ce for AB210 is spontaneous and endothermic.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2496
Author(s):  
Keyan Yang ◽  
Jingchen Xing ◽  
Jianmin Chang ◽  
Fei Gu ◽  
Zheng Li ◽  
...  

An eco-friendly and novel water treatment material was synthesized using sodium lignosulfonate modified polystyrene (SLPS), which can be used to eliminate phenols in aqueous solution. SLPS was characterized by BET, FTIR, SEM, and EDS. The effect of the initial pH value, phenol content, adsorption time, and temperature on the absorbability of phenol in SLPS was investigated through adsorption experiments. It was found that SLPS could efficiently adsorb phenol in aqueous solution at a pH value of about 7. The test results revealed that the kinetic adsorption and isotherm adsorption could be successfully described using the pseudo second-order and Langmuir models, respectively. It was illustrated that the phenol adsorption on SLPS was dominated by chemisorption and belonged to monolayer adsorption. The max. phenol adsorption value of SLPS was 31.08 mg/g at 30 °C. Therefore, SLPS displayed a great potential for eliminating phenol from polluted water as a kind of novel and effective adsorbent.


2013 ◽  
Vol 807-809 ◽  
pp. 1336-1342
Author(s):  
Ning Duan ◽  
Yin Feng Zhang ◽  
Ke Ming Wu

In the paper, a new composite absorbent was prepared by diatomite and zeolite. The structure of the prepared composite absorbent was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron micrograph (SEM) and Energy dispersive spectrometer (EDS). In addition, the kinetics and thermodynamics properties of the new composite absorbent to the phosphate in aqueous solution were investigated as well. The results showed that, new crystalline phases and fresh bonds might be formed in the prepared composite absorbent. The metallic contents in materials interacted with diatomite, leading to the formation of inorganic polymerized silicon complex and the increasing of the element content of calcium, magnesium, aluminum and ferrum in the new composite absorbent. It was found that the pseudo-second-order equation could fit the adsorption kinetics well, and the adsorption isotherms could be qualified by the Langmuir equation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhongmin Li ◽  
Peng Zou ◽  
Junzhou Yang ◽  
Miaoyang Huang ◽  
Linye Zhang ◽  
...  

AbstractA novel functionalized tannin-chitosan bentonite composite (TCBC) was successfully synthesized. The formation of the composite was confirmed by the X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FT-IR) analysis. The pHpzc of TCBC was 3.38. The influences such as pH, dosage of TCBC, temperature and initial Cr(VI) concentration on adsorption capacity were investigated. The experimental data indicated that the almost saturated adsorption of the TCBC towards Cr(VI) in 100 min. The maximum adsorption capacity was 262.08 mg/g at 333 K with initial pH = 2.5. The adsorption kinetics of Cr(VI) on TCBC followed the pseudo-second-order kinetics model. The isothermal data were well described by the models of Langmuir, Freundlich and Temkin. The results revealed that the adsorption of Cr(VI) on TCBC existed comprehensive effects and mainly belong to the chemisorption. The TCBC could keep good performances (qe = 192.17 mg/g) in five runs, 1 M NaOH was used as eluent for desorption, which showed a high desorption efficiency. Studies showed TCBC prepared with low cost and green raw materials, and simple green preparation technology had high adsorption capacity, good reusability and acidic tolerance. By exploring the Cr(VI)-Cr(III) hybrid system, part of Cr(VI) was reduced to Cr(III) and adsorbed by TCBC. The optimal adsorption pH of Cr(III) was 5.0.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 548 ◽  
Author(s):  
Ying Pei ◽  
Gaoqiang Xu ◽  
Xiao Wu ◽  
Keyong Tang ◽  
Guozhen Wang

Tannin/cellulose microspheres (T/C) were successfully prepared via a facile homogeneous reaction in a water/oil (W/O) emulsion for removing Pb(II) ions from aqueous solution. The structure of the microspheres was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and a zeta potential test. The effects of pH, adsorbent dosage, contact time, and temperature on adsorption ability were investigated. The results showed that T/C microspheres could combine Pb(II)ions via electrostatic attractions and physical adsorption. Adsorption kinetics could be better described by the pseudo-second-order kinetic model. The adsorption behaviors were in agreement with the Langmuir adsorption isotherm model with a fitting correlation coefficient of 0.9992. The maximum adsorption capacity was 23.75 mg/g from the Langmuir isotherm evaluation at 308K with an initial pH of 5. The results suggested that tannin/cellulose microspheres could be a low-cost and effective adsorbent for removing Pb(II) ions from aqueous solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ch. Suresh ◽  
D. Harikisore Kumar Reddy ◽  
Yapati Harinath ◽  
B. Ramesh Naik ◽  
K. Seshaiah ◽  
...  

A biosorbent was prepared by using wood apple shell (WAS) powder and studied its application for the removal of Cd(II) from aqueous solution by a batch method. The biosorbent was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and elemental analysis. WAS is principally made up of lignin and cellulose, containing functional groups such as alcoholic, ketonic, and carboxylic groups which can be involved in complexation reactions with Cd(II). The effect of experimental parameters like initial pH, contact time, metal ion concentration, and sorbent dose on adsorption was investigated. The optimum pH for biosorption of Cd(II) onto WAS was found to be pH 5.0 and the quantitative removal of Cd(II) ions was achieved in 30 min. The kinetic study showed that the biosorption process followed the pseudo-second-order rate. Experimental data were analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. Desorption studies were carried out using HCl solution.


2021 ◽  
Vol 68 (3) ◽  
pp. 548-561
Author(s):  
Boutheina Djobbi ◽  
Ghofrane Lassoued Ben Miled ◽  
Hatem Raddadi ◽  
Rached Ben Hassen

The adsorption of manganese ions from aqueous solutions by pure and acid-treated Opuntia ficus indica as natural low-cost and eco-friendly adsorbents was investigated. The adsorbents’ structures were characterized by powder X-ray diffraction and infrared spectroscopy. Specific surface areas were determined using the Brunauer-Emmett-Tell equation. The study was carried out under various parameters influencing the manganese removal efficiency such as pH, temperature, contact time, adsorbent dose and initial concentration of manganese ion. The maximum adsorption capacity reached 42.02 mg/g for acid-treated Opuntia ficus indica, and only 20.8 mg /g for pure Opuntia ficus indica. The Langmuir, Freundlich and Temkin isotherms equations were tested, and the best fit was obtained by the Langmuir model for both adsorbents. The thermodynamic study shows that chemisorption is the main adsorption mechanism for the activated adsorbent while physisorption is the main adsorption mechanism for the pure adsorbent. The kinetics of the adsorption have been studied using four kinetics models of pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion. Structural analyses indicate the appearance of MnOx oxides on the cellulose fibers. The adsorption mechanisms consist of an electrostatic interaction followed by oxidation of the Mn (II) to higher degrees, then probably by binding to the surface of the adsorbent by different C-O-MnOx bonds.


2021 ◽  
Vol 83 (5) ◽  
pp. 1183-1197
Author(s):  
Jian Zhang ◽  
Wenjing Lu ◽  
Hui Li ◽  
Siyan Zhan ◽  
Ximo Wang ◽  
...  

Abstract In this study, the polyethyleneimine (PEI) modified waste bamboo powder (WBP-Na-PEI) was successfully prepared and applied to adsorbing Congo red (CR) dye from aqueous solution. The obtained materials were characterized by field emission scanning electron microscope, X-ray diffraction, Fourier transform-infrared, and thermogravimetric analysis. The results showed that WBP-Na-PEI(1.8 K-5) was synthesized successfully and PEI uniformly covered the WBP-Na-PEI(1.8 K-5) surface. In the process of adsorption, four kinds of influencing factors were discussed, and the adsorption mechanisms such as kinetics, isotherm, thermodynamics were explored. The maximum adsorption capacity of WBP-Na-PEI(1.8 K-5) was 992.94 mg·g−1 at 298 ± 1 K, and the removal efficiency was over 98%. Pseudo-first-order, pseudo-second-order and intra-particle diffusion models were studied, the results showed that the adsorption process conformed to the pseudo-second-order model, and the rate of this process was controlled by many steps. Furthermore, the removal efficiency of the adsorption kinetics reached 85% within 10 minutes. The results of the isotherm model and thermodynamics showed that the adsorption process was consistent with the Langmuir model and was mainly a spontaneous chemical endothermic process of monolayer. And the removal efficiency of the adsorbent reached 93% at the concentration of 400 mg/L, which can be expected to have a broad prospect in the treatment of CR industrial wastewater.


2021 ◽  
Vol 11 (3) ◽  
pp. 271
Author(s):  
Kambiré Ollo ◽  
Kouakou Yao Urbain ◽  
Kouyaté Amadou ◽  
Sadia Sahi Placide ◽  
Kouadio Kouakou Etienne ◽  
...  

<p>In the present study, adsorption experiments were carried out to investigate the removal of rhodamine B from an aqueous solution using chemically activated carbon from corn cobs, a cheaper adsorbent. The characteristics of carbon were determined using X-ray diffraction, SEM, iodine number, pHpzc, and the Boehm titration method. The results show that the prepared activated carbon is amorphous, microporous, and generally acidic on the surface. The kinetic study of the adsorption of rhodamine B on this carbon was carried out, and the rate of sorption was found to conform to pseudo-second-order kinetics with 80 min as equilibrium time. The equilibrium adsorption revealed that the experimental data fitted better to the Langmuir isotherm model for removing rhodamine B. The interaction rhodamine B-activated carbon is mainly chemisorption type. The optimal conditions of rhodamine B removal onto the carbon of this study are mass of carbon = 0.3 g and pH = 3.15. The maximum monolayer adsorption capacity for rhodamine B removal was found to be 5.92 mg.g<sup>-1</sup>. This study has shown that the prepared activated carbon makes it possible to effectively clean up wastewater contaminated by rhodamine B with a removal efficiency of up to 99.60% for 300 mg of AC in 25 mL of the rhodamine B solution (5 mg.L<sup>-1</sup>).</p>


Sign in / Sign up

Export Citation Format

Share Document