Scavenging of Organic Pollutant And Fuel Generation Through Cost-Effective And Abundantly Accessible Rust: An Economical Approach For Waste Management And Energy Generation

Author(s):  
Nisar Khan ◽  
Idrees Khan ◽  
Tamanna Gul ◽  
Ibrahim Khan ◽  
Shahid Ali ◽  
...  

Abstract At present, wastes management and energy generation are the foremost concerns due to their direct relationship with the biological species and environment. Herein we report utilization of iron rust (inorganic pollutant) as photocatalyst for photodegradation of methylene blue (MB) dye (organic pollutant) under visible light (economic) and water oxidation (energy generation). Iron rust was collected from metallic pipes and calcined in the furnace at 700 °C for 3 h in order to remove moisture/volatile content. The uncalcined and calcined Rust are characterized through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) analysis, X-Ray Diffraction (XRD) and Thermogravematric analysis (TGA). The morphological study illustrated that the shape of uncalcinedand calcined iron rust is spongy, porous, and agglomerated. The XRD and DLS particle size is in a few hundred-nanometer range.The photodegradation (PD) investigation shows that calcined Rust is a potent photocatalyst for the PD of modeled MB and degraded about 94% in a very short time of 11 min. The photoelectrochemical (PEC) measurements revealed that calcined Rust is more active than uncalcined Rust under simulated 1-SUN illumination with respective photocurrent densities of ~0.40 and ~0.32 mA/cm2. These results demonstrate that cheaper and abundantly available Rust can be a useful candidate for environmental and energy applications.

2016 ◽  
Vol 881 ◽  
pp. 307-312
Author(s):  
Luis Antonio C. Ybarra ◽  
Afonso Chimanski ◽  
Sergio Gama ◽  
Ricardo A.G. da Silva ◽  
Izabel Fernanda Machado ◽  
...  

Tungsten carbide (WC) based composites are usually produced with cobalt, but this binder has the inconvenience of shortage, unstable price and potential carcinogenicity. The objective of this study was to develop WC composite with intermetallic Fe3Al matrix. Powders of WC, iron and aluminum, with composition WC-10 wt% Fe3Al, and 0.5 wt% zinc stearate were milled in a vibration mill for 6 h and sintered in a SPS (spark plasma sintering) furnace at 1150 °C for 8 min under pressure of 30 MPa. Measured density and microstructure analysis showed that the composite had significant densification during the (low-temperature, short time) sintering, and X-ray diffraction analysis showed the formation of intermetallic Fe3Al. Analysis by Vickers indentation resulted in hardness of 11.2 GPa and fracture toughness of 24.6 MPa.m1/2, showing the feasibility of producing dense WC-Fe3Al composite with high mechanical properties using the SPS technique.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xu Zhang ◽  
Ying Zhang ◽  
Dong Wang ◽  
Fengyu Qu

Perfect cuprous oxide (Cu2O) nanocrystals with octahedron shape were successfully synthesized by a facile route without chemical additive in a short time. The products were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The adsorption ability of the products towards congo red (CR) as the pollutant was investigated and FTIR spectroscopy was employed to identify the adsorbed species. The adsorption behavior was analyzed based on the microstructure of Cu2O submicro-octahedra.


2021 ◽  
Author(s):  
Vikash Gajraj ◽  
Alesh Kumar ◽  
Ekta Dadarwal ◽  
Rahul Kaushik ◽  
Amilan Jose Devadoss ◽  
...  

Different weight percentages of NiCo2O4–rGO nanocomposites were prepared via a facile hydrothermal method. The prepared nanocomposites were structurally and morphologically characterized by X-ray diffraction, Raman spectroscopy and electron microscopies. The...


2011 ◽  
Vol 356-360 ◽  
pp. 423-429
Author(s):  
Meng Ye ◽  
Jin Huang ◽  
Rui Chen ◽  
Qi Zhuang He

An elevated arsenic (As) content in groundwater imposes a great threat to people worldwide. Thus, developing new and cost-effective methods to remove As from groundwater and drinking water becomes a priority. Using Zero-Valent iron (ZVI) to remove As from water is a proven technology. In this study, ZVI modified SBA-15 mesoporous silicamolecular sieves (ZVI-SBA-15), was prepared, characterized, and used for removing arsenic from water. Wet impregnation, drying, and calcination steps led to iron inclusion within the mesopores. Iron oxide was reduced to ZVI by NaBH4, and the ZVI modified SBA-15 was obtained. Fourier-transform infrared spectroscopy confirmed the preparation process of the nitrate to oxide forms. The structure of the materials was confirmed by Powder X-ray diffraction. Its data indicated that the structure of ZVI-SBA-15 retained the host SBA-15 structure. Brunauer-Emmett-Teller analysis revealed a decrease in surface area and pore size, indicating ZVI-SBA-15 coating on the inner surfaces. Transmission electron micrographs also confirmed that modified SBA-15 retained the structure of the parent SBA-15 silica.It has a high uptake capability(more than 90 pecent) make it potentially attractive absorbent for the removal of arsenic from water.


Author(s):  
Nguyen Quang Long

For a few decades, Titanium Dioxide (TiO2) has been the most studied photocatalyst due to its significant optical property. In the paper, TiO2 pigment powder (Anatase form) was selected as a precursor to prepare a variety of Black-TiO2 samples, and the typical material was then evaluated for its photocatalytic activity in organic pollutant treatment. Some properties of Black-TiO2 were determined via common methods such as sensory analysis, X-Ray diffraction, and bandgap measurement obtained from UV-Vis spectroscopy. As a result, the material was successfully converted to more than 40% organic pollutant as Methyl Orange (C14H14N3NaO3S) for an hour, as two times higher than that of the amount converted by pristine TiO2. In addition, Black-TiO2 performed much better photocatalytic activity in an acidic medium in comparison with a neutral one, and the material also remained its activity as more than 90% after three time-continuous recycling operations.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950118 ◽  
Author(s):  
M. NAEEM ◽  
H. A. RAZA ◽  
M. SHAFIQ ◽  
FARHAT SHABBIR ◽  
JAVED IQBAL ◽  
...  

The nonalloyed steels are very cost-effective, but their usefulness in numerous applications is imbedded due to low mechanical strength. The strength of several steels can be improved by nitriding; however, nonalloyed steels are not suitable. They can be nitrided by introducing special nitriding alloys (like chromium, aluminum, etc.) during manufacturing or some interlayer deposition, but it is quite expensive. The aim of this study is to improve nitriding capability of nonalloyed steels without any additional treatment. This is done by using alloyed stainless steel active screen in active screen plasma treatment, which provides an adequate amount of chromium to form stable and hard nitrides. The processed samples are characterized by X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy, pin-on-disc wear tester, hardness tester and potentiodynamic polarization test.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Thilagavathi Thirugnanam

Fibers irregular and seed-like microcrystalline ZnO were synthesized by using a cost-effective and low temperature aqueous sol-gel method. Various polymers, namely, polyethylene glycol 6000 (PEG 6000) and polyvinyl pyrrolidone (PVP), were used as structure directing agents. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The X-ray diffraction pattern revealed the formation of phase-pure ZnO micropowders. It is observed that the polymers play an important role in modifying the surface morphology and the size of the crystallites. A compact granular morphology is observed for the ZnO samples without polymer. The samples exhibit microparticles of size 100 nm for PVP and for PEG-mediated growth, whereas microporous corrugated morphology is observed for added PEG-mediated micropowder. FTIR study is used to confirm the structural modifications occurring in the polymers.


2011 ◽  
Vol 704-705 ◽  
pp. 1406-1409
Author(s):  
Meng Song ◽  
Yun Li Feng ◽  
Jing Bo Yang

Annealing and dip galvanizing treatments of Galvalume were studied by using methods of Gleeble thermal simulation experiment and optical microscopy (OM), scanning electronic microscopy (SEM), X-ray energy dispersive analysis (EDAX), X-ray diffraction (XRD) and so on. Meanwhile, surface morphology, microstructure, phases and the respective compositions of Al-Zn alloy coating plate were analyzed. The results show that decreased rate and prolonged time of annealing treatment cause less effect on process ability of product, which all because of the short time of annealing process in continuous aluminum-zinc treatment. However, coarse grain which causes low strength, high elongation and r value occurs when rising annealing temperature. To get better coated surface, in-zinc pot temperature should be controlled in the range of 590~610°C, and height of air-knife nozzle should be kept in the range of 150~200mm. Surface layer of 55%Al-Zn alloy coating is covered by Al-Zn alloy, the intermediate alloy layer is consisted of binary and ternary compounds, such as θ phase (FeAl3), Al0.3Fe3Si0.7 and Al3.21Si0.47. Keywords: Galvalume, Process, Microstructure, Properties


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1803 ◽  
Author(s):  
Kanthasamy Raagulan ◽  
Ramanaskanda Braveenth ◽  
Hee Jang ◽  
Yun Seon Lee ◽  
Cheol-Min Yang ◽  
...  

MXene and graphene based thin, flexible and low-density composite were prepared by cost effective spray coating and solvent casting method. The fabricated composite was characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray (EDX). The prepared composites showed hydrophobic nature with higher contact angle of 126°, −43 mN·m−1 wetting energy, −116 mN·m−1 spreading Coefficient and 30 mN·m−1 lowest work of adhesion. The composites displayed excellent conductivity of 13.68 S·cm−1 with 3.1 Ω·sq−1 lowest sheet resistance. All the composites showed an outstanding thermal stability and constrain highest weight lost until 400 °C. The MXene-graphene foam exhibited excellent EMI shielding of 53.8 dB (99.999%) with reflection of 13.10 dB and absorption of 43.38 dB in 8–12.4 GHz. The single coated carbon fabric displayed outstanding absolute shielding effectiveness of 35,369.82 dB·cm2·g−1. The above results lead perspective applications such as aeronautics, radars, air travels, mobile phones, handy electronics and military applications.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2585 ◽  
Author(s):  
Ravi Mani Tripathi ◽  
Dohee Ahn ◽  
Yeong Mok Kim ◽  
Sang J. Chung

Recent developments in the area of nanotechnology have focused on the development of nanomaterials with catalytic activities. The enzyme mimics, nanozymes, work efficiently in extreme pH and temperature conditions, and exhibit resistance to protease digestion, in contrast to enzymes. We developed an environment-friendly, cost-effective, and facile biological method for the synthesis of ZnO-Pd nanosheets. This is the first biosynthesis of ZnO-Pd nanosheets. The synthesized nanosheets were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray. The d-spacing (inter-atomic spacing) of the palladium nanoparticles in the ZnO sheets was found to be 0.22 nm, which corresponds to the (111) plane. The XRD pattern revealed that the 2θ values of 21.8°, 33.3°, 47.7°, and 56.2° corresponded with the crystal planes of (100), (002), (112), and (201), respectively. The nanosheets were validated to possess peroxidase mimetic activity, which oxidized the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate in the presence of H2O2. After 20 min of incubation time, the colorless TMB substrate oxidized into a dark-blue-colored one and a strong peak was observed at 650 nm. The initial velocities of Pd-ZnO-catalyzed TMB oxidation by H2O2 were analyzed by Michaelis–Menten and Lineweaver–Burk plots, resulting in 64 × 10−6 M, 8.72 × 10−9 Msec−1, and 8.72 × 10−4 sec−1 of KM, Vmax, and kcat, respectively.


Sign in / Sign up

Export Citation Format

Share Document