scholarly journals Waste tea residue adsorption coupled with electrocoagulation for improvement of copper and nickel ions removal from simulated wastewater

Author(s):  
Jean Claude Nizeyimana ◽  
Shanshan Lin ◽  
Junaid Khan ◽  
Wu Yifeng ◽  
Han dongxu ◽  
...  

Abstract The present research deals with the removal of copper and nickel ions from synthesized wastewater by using simple, cheap, cost-effective and sustainable activated green waste tea residue (AGWTR) adsorption coupled with electrocoagulation (ADS/EC) process in presence of iron electrode. Considering previous studies, their adsorbents used for treating their wastewaters firstly activate them by applying either chemicals or activating agents. Our adsorbent was prepared without applying neither chemicals nor any activating agents. The operating parameters of both metals were optimized: pH (4.0), hydraulic retention time (HRT = 30 min), adsorbent dose (1 mg.L− 1), initial concentration (20 mg.L− 1) and Fe-Fe electrode was found to be better with compared to the other electrodes with a current density of 1.19 mA/cm2. In the process of ADS/EC, The removal efficiency was obtained as 100% for copper and 99.99% for nickel ions. After the ADS/EC process, Fourier transform infrared (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM) and EDS analysis were used to characterize the adsorbent green waste tea residue. The results showed seven clear peaks of functional groups that were detected in the range of 1000–4000 cm− 1, the rough-stone-like with various larger holes and higher amounts of carbon containing traces of different elements, respectively. The adsorption isotherm and kinetic model results showed that the Langmuir and the pseudo-second-order were well-fitted to the adsorption experimental data better than the Freundlich and pseudo-first-order models for both Cu2+ and Ni2+ with their maximum adsorption capacity of 15.6 and 15.9 mg.g− 1, respectively. These indicate that the dominant adsorption occurs in a monolayer of homogeneous adsorbent surfaces on AGWTR and its kinetic mechanism belongs to chemical adsorption. Based on the above results, it is well understood that the use of the ADS coupled with EC technique is the cheapest compared with single ADS and EC technique for heavy metal removal due to remarkable low adsorption dose, energy consumption and also it is a suitable technique for developind countries. Therefore, the AGWTR shows the greatest potential to improve the quality of water contaminated with different heavy metals in the environment.

RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75430-75439 ◽  
Author(s):  
Pan-pan Chen ◽  
Hong-ping Zhang ◽  
Huan-de Liu ◽  
Xue-gang Luo ◽  
Xiao-yan Lin ◽  
...  

A novel KGM based biochar with super heavy metal removal capacities can be prepared conveniently.


2006 ◽  
Vol 930 ◽  
Author(s):  
Kevin Andrew Young ◽  
Alessandro Anzalone ◽  
Thomas Pichler ◽  
Michel Picquart ◽  
Norma A. Alcantar

ABSTRACTThe use of natural environmentally benign agents in the treatment of drinking water is rapidly gaining interest due to their inherently renewable character and low toxicity. We show that the common Mexican cactus produces a gum-like substance, cactus mucilage, which shows excellent flocculating abilities and is an economically viable alternative for low-income communities. Cactus mucilage is a neutral mixture of approximately 55 high-molecular weight sugar residues composed basically of arabinose, galactose, rhamnose, xylose, and galacturonic acid. We show how this natural product was characterized for its use as a flocculating agent. Our results show the mucilage efficiency for reducing arsenic and particulates from drinking water as determined by light scattering, Atomic Absorption and Hydride Generation-Atomic Fluorescence Spectroscopy. Flocculation studies proved the mucilage to be a much faster flocculating agent when compared to Al2(SO4)3 with the efficiency increasing with mucilage concentration. Jar tests revealed that lower concentrations of mucilage provided the optimal effectiveness for supernatant clarity, an important factor in determining the potability of water. Initial filter results with the mucilage embedded in a silica matrix prove the feasibility of applying this technology as a method for heavy metal removal. This project provides fundamental, quantitative insights into the necessary and minimum requirements for natural flocculating agents that are innovative, environmentally benign, and cost-effective.


2020 ◽  
Vol 1010 ◽  
pp. 489-494
Author(s):  
Abdul Hafidz Yusoff ◽  
Rosmawani Mohammad ◽  
Mardawani Mohamad ◽  
Ahmad Ziad Sulaiman ◽  
Nurul Akmar Che Zaudin ◽  
...  

Conventional methods to remove heavy metals from polluted water are expensive and not environmentally friendly. Therefore, this study was carried out to investigate the potential of agricultural waste such as pineapple peel (Ananas Cosmos) as low-cost absorbent to remove heavy metals from synthetic polluted water. The results showed that Cd, Cr and Pb were effectively removed by the biosorbent at 12g of pineapple peels in 100 mL solution. The optimum contact time for maximum adsorption was found to be 90 minutes, while the optimum pH for the heavy metal’s adsorption was 9. It was demonstrated that with the increase of adsorbent dosage, the percent of heavy metals removal was also increased due to the increasing adsorption capacity of the adsorbent. In addition, Langmuir model show maximum adsorption capacity of Cd is 1.91 mg/g. As conclusions, our findings show that pineapple peel has potential to remove heavy metal from polluted water.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1636
Author(s):  
Bowen Shen ◽  
Bixuan Wang ◽  
Liying Zhu ◽  
Ling Jiang

Heterometallic zeolite imidazole framework materials (ZIF) exhibit highly attractive properties and have drawn increased attention. In this study, a petal-like zinc based ZIF-8 crystal and materials doped with cobalt and nickel ions were efficiently prepared in an aqueous solution at room temperature. It was observed that doped cobalt and nickel had obviously different effects on the morphology of ZIF-8. Cobalt ions were beneficial for the formation of ZIF-8, while addition of nickel ions tended to destroy the original configuration. Then we compared the absorption ability for metal ions between petal-like ZIF-8 and its doped derivatives with anion dichromate ions (Cr2O72−) and cation copper ions (Cu2+) as the absorbates. Results indicated that saturated adsorption capacities of Co@ZIF-8 and Ni@ZIF-8 for Cr2O72− reach 43.00 and 51.60 mg/g, while they are 1191.67 and 1066.67 mg/g for Cu2+, respectively, which are much higher than the original ZIF-8 materials. Furthermore, both the heterometallic ZIF-8 materials show fast adsorption kinetics to reach adsorption equilibrium. Therefore, petal-like ZIF-8 with doped ions can be produced through a facile method and can be an excellent candidate for further applications in heavy-metal treatment.


2013 ◽  
Vol 389 ◽  
pp. 29-35 ◽  
Author(s):  
Norzila Othman ◽  
S. Mohd-Asharuddin ◽  
M.F.H. Azizul-Rahman

Biosorption is an environmental friendly method for metal removal as it can be used as a cost effective and efficient technique for heavy metal removal. A lot of biomass can be choosed as biosorbent such as waste material from food processing and agriculture.ent. This paper will review the potential used of local fruit rind as biosorbent for heavy metal removal in wastewater. Heavy metals have been in various industries and resulted to a toxic condition in aquatic ecosystem. Therefore, various techniques have been employed for the treatment of metal-bearing industrial wastewaters including biological treatment through biosorption. Biosorption offers the advantages of low cost, good efficiency and production of sludge with high metal content is possible to avoid by the existence of metal recovery method from metal loaded biosorbent. The successful application of local fruit waste in treating wastewater containing heavy metals requires a deeper understanding of how biosorbent material proceeds.


2015 ◽  
Vol 72 (6) ◽  
pp. 983-989 ◽  
Author(s):  
Zheng-ji Yi ◽  
Jun Yao ◽  
Yun-fei Kuang ◽  
Hui-lun Chen ◽  
Fei Wang ◽  
...  

The excessive discharge of Pb(II) into the environment has increasingly aroused great concern. Adsorption is considered as the most effective method for heavy metal removal. Chinese walnut shell activated carbon (CWSAC) was used as an adsorbent for the removal of Pb(II) from aqueous solution. Batch experiments were conducted by varying contact time, temperature, pH, adsorbent dose and initial Pb(II) concentration. Adsorption equilibrium was established within 150 min. Although temperature effect was insignificant, the Pb(II) adsorption was strongly pH dependent and the maximum removal was observed at pH 5.5. The Pb(II) removal efficiency increased with increasing CWSAC dosage up to 2.0 g/L and reached a maximum of 94.12%. Langmuir and Freundlich adsorption isotherms were employed to fit the adsorption data. The results suggested that the equilibrium data could be well described by the Langmuir isotherm model, with a maximum adsorption capacity of 81.96 mg/g. Adsorption kinetics data were fitted by pseudo-first- and pseudo-second-order models. The result indicated that the pseudo-first-order model best describes the adsorption kinetic data. In summary, CWSAC could be a promising material for the removal of Pb(II) from wastewater.


Author(s):  
Lal Ji Verma ◽  
Pramod Kumar Singh ◽  
Saurav Ambastha

This study uses naturally growing water hyacinth for wastewater purification system, this is an alternative technique of heavy metal remediation. These plants enhance the removal of pollutants by consuming part of them in the form of the plant nutrients. The vascular plants cultured in such treatment system perform several functions, including assimilation and storing contaminates, transporting O2 to root zone, and providing a substrate for microbial activity, canal containing floating macrophytes. This applies to municipal wastewater, in particular, where treatment units of different size can be applied at the pollution source and consumes less energy for the running. The effectiveness of wastewater purification by different plants was tested on laboratory and pilot scales. The aquatic plants system offers an environmentally friendly and cost effective technology, which have been used for removing Cadmium, Iron and Copper from wastewater. Batch experiments verified that the plants are capable of decreasing all tested indicators for water quality to levels that permit the use of purified water for irrigation, which poses serious problems in various locations throughout the country. It is shown that mixture of wastewater from in front of Gautam Budha University canal/ Greater Noida’s canal wastewater and Galgotias University sewage treatment plants. The removal efficiency of the Cadmium, Iron and Copper is 74.52%, 75.31% and 67.75% in greater Noida’s canal and 73.72%, 74.99 % and 68.37% in Galgotias University’s wastewater respectively.


2019 ◽  
Vol 241 ◽  
pp. 118342 ◽  
Author(s):  
Simeng Li ◽  
Runwei Li ◽  
Youneng Tang ◽  
Gang Chen

Author(s):  
M. Thakur

The innovation of different technologies and emphasis on development of new techniques is indispensable to improve the quality of water globally. Photocatalysis is one of the major techniques explored now a days for the exclusion of water impurities using solar light. Different types of photocatalysts have been employed for the removal of dyes, heavy metals, pesticides from aqueous system. During the last few years, nanocomposite ion exchangers were used as a photocatalyst for the removal of organic pollutants. This chapter includes detailed information about introduction of pollutants into the water system, nanocomposite ion exchangers and photocatalysis removal. Nanocomposite ion exchangers effectively degrade various pollutants present in the marine system. These nanocomposites have also been used in different areas such as fuel cell, sensor, nuclear separation and heavy metal removal etc. Therefore, nanocomposite ion exchangers are a new age photocatalyst with unique and effective properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Rajaa Bassam ◽  
Achraf El hallaoui ◽  
Marouane El Alouani ◽  
Maissara Jabrane ◽  
El Hassan El Khattabi ◽  
...  

The aim of this study is the valorization of the Moroccan clays (QC-MC and QC-MT) from the Middle Atlas region as adsorbents for the treatment of water contaminated by cadmium Cd (II) ions. The physicochemical properties of natural clays are characterized by ICP-MS, XRD, FTIR, and SEM techniques. The adsorption process is investigated as a function of adsorbent mass, solution pH, contact time, temperature, and initial Cd (II) ion concentration. The kinetic investigation shows that the adsorption equilibrium of Cd (II) ions by both natural clays is reached after 30 min for QC-MT and 45 min for QC-MC and fits well to a pseudo-second-order kinetic model. The isotherm study is best fitted by a Freundlich model, with the maximum adsorption capacity determined by the linear form of the Freundlich isotherm being 4.23 mg/g for QC-MC and 5.85 mg/g for QC-MT at 25°C. The cadmium adsorption process was thermodynamically spontaneous and exothermic. The regeneration process showed that these natural clays had excellent recycling capacity. Characterization of the Moroccan natural clays before and after the adsorption process through FTIR, SEM, XRD, and EDX techniques confirmed the Cd (II) ion adsorption on the surfaces of both natural clay adsorbents. Overall, the high adsorption capacity of both natural clays for Cd (II) ions removal compared to other adsorbents motioned in the literature indicated that these two natural adsorbents are excellent candidates for heavy metal removal from aqueous environments.


Sign in / Sign up

Export Citation Format

Share Document