scholarly journals The transcriptome analysis of Escherichia coli responding to tellurite

Author(s):  
Sushu Hu ◽  
Wanli Peng ◽  
Shuangjun Lin ◽  
Zixin Deng ◽  
Rubing LIANG

Abstract Tellurite is a strong antimicrobial agent highly toxic to many microorganisms, while its toxicity mechanism is still unclear. In this study, the comparative transcriptome analysis of E. coli MG1655 responding to the stress of tellurite was performed and the differentially transcribed genes were analyzed, to understand toxicity mechanisms of tellurite preliminaryly and uncover metabolism processes changes resulted from tellurite globally. After treated with 10 µg/mL tellurite for 1 h, high concentration and long time, the cells exhibited an obvious adaptive reaction and many metabolic processes were influenced. The transcription of the genes involved in the ribosome metabolism and the flagella assembly were changed significantly, implying they might be the major pathway affected by tellurite. The transcription of the genes encoding the transcriptional factors and small RNAs, and the genes functioned in the cell motility, metal ion metabolism and membrane function were also varied, which may participate in the metabolism adjustment and damage repair to resist the toxicity of tellurite. This work can facilitate the study of the toxicity mechanism of tellurite and promote the clinical application of this chemical.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chue Vin Chin ◽  
Jisha Antony ◽  
Sarada Ketharnathan ◽  
Anastasia Labudina ◽  
Gregory Gimenez ◽  
...  

Mutations in genes encoding subunits of the cohesin complex are common in several cancers, but may also expose druggable vulnerabilities. We generated isogenic MCF10A cell lines with deletion mutations of genes encoding cohesin subunits SMC3, RAD21, and STAG2 and screened for synthetic lethality with 3009 FDA-approved compounds. The screen identified several compounds that interfere with transcription, DNA damage repair and the cell cycle. Unexpectedly, one of the top ‘hits’ was a GSK3 inhibitor, an agonist of Wnt signaling. We show that sensitivity to GSK3 inhibition is likely due to stabilization of β-catenin in cohesin-mutant cells, and that Wnt-responsive gene expression is highly sensitized in STAG2-mutant CMK leukemia cells. Moreover, Wnt activity is enhanced in zebrafish mutant for cohesin subunits stag2b and rad21. Our results suggest that cohesin mutations could progress oncogenesis by enhancing Wnt signaling, and that targeting the Wnt pathway may represent a novel therapeutic strategy for cohesin-mutant cancers.


2019 ◽  
Vol 16 (1) ◽  
pp. 30-35
Author(s):  
Olga N. Ignatovich ◽  
Leyla S. Namazova-Baranova ◽  
Tea V. Margieva ◽  
Natalia V. Zhurkova ◽  
Kirill V. Savostyanov ◽  
...  

Osteogenesis imperfect is genetically heterogeneous group of diseases which are characterized by bone brittleness and fractures. It was thought for a long time that this is happening due to mutations in collagen genes. However, within past decade the understanding of osteogenesis imperfecta etiology has changed as a result of genetics development. The majority of all cases is related to mutations in collagen genes whereas rare mostly recessive forms are related to mutations in genes encoding collagen post-translational modification. Mutations in SERPINF1 gene were chosen as molecular cause of osteogenesis imperfecta type VI in 2011. Thus the new pathophysiology of this disease was revealed. Children with osteogenesis imperfecta type VI have high-frequency of fractures despite the management with bisphosphonates because mineralized bone osteoid is considerably reduced.


Author(s):  
Chue Vin Chin ◽  
Jisha Antony ◽  
Sarada Ketharnathan ◽  
Gregory Gimenez ◽  
Kate M. Parsons ◽  
...  

AbstractMutations in genes encoding subunits of the cohesin complex are common in several cancers, but may also expose druggable vulnerabilities. We generated isogenic MCF10A cell lines with deletion mutations of genes encoding cohesin subunits SMC3, RAD21 and STAG2 and screened for synthetic lethality with 3,009 FDA-approved compounds. The screen identified several compounds that interfere with transcription, DNA damage repair and the cell cycle. Unexpectedly, one of the top ‘hits’ was a GSK3 inhibitor, an agonist of Wnt signaling. We show that sensitivity to GSK3 inhibition is likely due to stabilization of β-catenin in cohesin mutant cells, and that Wnt-responsive gene expression is highly sensitized in STAG2-mutant CMK leukemia cells. Moreover, Wnt activity is enhanced in zebrafish mutant for cohesin subunit rad21. Our results suggest that cohesin mutations could progress oncogenesis by enhancing Wnt signaling, and that targeting the Wnt pathway may represent a novel therapeutic strategy for cohesin mutant cancers.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Le Thi Thanh Tran ◽  
Le Van Luan ◽  
Tran Quang Hieu ◽  
Le Van Tan

Among soil pollutants, lead (Pb) is one of the toxic metal pollutants widely used in many industrial processes and occurs as a contaminant in environment. In this study, a field experiment was carried out to investigate the accumulation of lead from soil contaminated by this metal ion on the biomass of some vegetables, including spinach, lettuce, carrots, and potatoes. The results showed that lead was cumulative metal. Besides, the level of lead accumulation in soil of the studied vegetables decreased in the order of tubers of carrots, tubers of potato, spinach root, lettuce root, stems and leaves of spinach, stem and leaves of carrot, stems and leaves of potato, and stem and leaves of lettuce, respectively. Our investigations demonstrate the effect of copper and zinc micronutrient elements which play an important role in the growth and development of plants, on the accumulation of lead from contaminated soil of the studied vegetables. The obtained results showed that high concentration of copper and zinc in soil cause competition with lead in the process of absorption and accumulation in the plant. Specifically, copper and zinc showed the inhibition effect on the uptake and accumulation of lead by these plants.


2021 ◽  
Author(s):  
Raed H. Althomali ◽  
Khalid A. Alamry ◽  
Mahmoud Hussein Abdo ◽  
Shams H. Abdel-Hafez

Abstract In this study, the catalytic reduction behavior of carboxylated alginic acid derivatives has been investigated against the harmful organic dyes including Methyl Orange (MO) and Congo Red (CR). Alginic acid was firstly oxidized through an easy addition of KMnO4 as an oxidizing agent. A carboxylated alginic acid (CAA) has been interacted with selected metal ions (Sn, Fe, Ni, and Zr) through coordination bonds at the value of pH = 4 to form the corresponding metal complexes namely: Sn-CAA, Fe-CAA, Ni-CAA and Zr-CAA. The consistency of the coordination was confirmed by several spectroscopic techniques including FT-IR, XRD, SEM, and EDX. The catalytic reduction of these metal ion-based products was carried out against MO and CR in the presence of NaBH4 as a reducing agent under UV irradiation. All catalysts based metal complexes showed enhanced catalytic reduction against CR compared to MO. Among all those mentioned metal complexes Sn-CAA showed the best catalytic reduction of these dyes. The time taken by the Sn-CAA for CR, and MO is 5 and 7min respectively. Ni-CAA was classified as the second efficient product against both dyes, where the reduction process took 20 and 9 min respectively. The other two catalysts took a long time for CR and MO reduction. Zr-CAA showed more than 80 % reduction of only CR dye within 20 min. Whereas, Fe-CAA did not show any significant sign of reduction against both the dyes after the same time. The order of higher catalytic reduction was illustrated as: Sn-CAA > Ni-CAA > Zr-CAA = Fe-CAA.


2020 ◽  
Vol 21 (2) ◽  
pp. 490 ◽  
Author(s):  
Anatoly Nikolaev ◽  
John B. Fiveash ◽  
Eddy S. Yang

Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric brainstem tumor with a 5-year survival of <1%. Up to 80% of the DIPG tumors contain a specific K27M mutation in one of the two genes encoding histone H3 (H3K27M). Furthermore, p53 mutations found in >70–80% of H3K27M DIPG, and mutant p53 status is associated with a decreased response to radiation treatment and worse overall prognosis. Recent evidence indicates that H3K27M mutation disrupts tri-methylation at H3K27 leading to aberrant gene expression. Jumonji family histone demethylases collaborates with H3K27 mutation in DIPG by erasing H3K27 trimethylation and thus contributing to derepression of genes involved in tumorigenesis. Since the first line of treatment for pediatric DIPG is fractionated radiation, we investigated the effects of Jumonji demethylase inhibition with GSK-J4, and mutant p53 targeting/oxidative stress induction with APR-246, on radio-sensitization of human H3K27M DIPG cells. Both APR-246 and GSK-J4 displayed growth inhibitory effects as single agents in H3K27M DIPG cells. Furthermore, both of these agents elicited mild radiosensitizing effects in human DIPG cells (sensitizer enhancement ratios (SERs) of 1.12 and 1.35, respectively; p < 0.05). Strikingly, a combination of APR-246 and GSK-J4 displayed a significant enhancement of radiosensitization, with SER of 1.50 (p < 0.05) at sub-micro-molar concentrations of the drugs (0.5 μM). The molecular mechanism of the observed radiosensitization appears to involve DNA damage repair deficiency triggered by APR-246/GSK-J4, leading to the induction of apoptotic cell death. Thus, a therapeutic approach of combined targeting of mutant p53, oxidative stress induction, and Jumonji demethylase inhibition with radiation in DIPG warrants further investigation.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 891 ◽  
Author(s):  
Ana Karen López-Contreras ◽  
María Guadalupe Martínez-Ruiz ◽  
Cecilia Olvera-Montaño ◽  
Ricardo Raúl Robles-Rivera ◽  
Diana Esperanza Arévalo-Simental ◽  
...  

Diabetic retinopathy is one of the leading causes of visual impairment and morbidity worldwide, being the number one cause of blindness in people between 27 and 75 years old. It is estimated that ~191 million people will be diagnosed with this microvascular complication by 2030. Its pathogenesis is due to alterations in the retinal microvasculature as a result of a high concentration of glucose in the blood for a long time which generates numerous molecular changes like oxidative stress. Therefore, this narrative review aims to approach various biomarkers associated with the development of diabetic retinopathy. Focusing on the molecules showing promise as detection tools, among them we consider markers of oxidative stress (TAC, LPO, MDA, 4-HNE, SOD, GPx, and catalase), inflammation (IL-6, IL-1ß, IL-8, IL-10, IL-17A, TNF-α, and MMPs), apoptosis (NF-kB, cyt-c, and caspases), and recently those that have to do with epigenetic modifications, their measurement in different biological matrices obtained from the eye, including importance, obtaining process, handling, and storage of these matrices in order to have the ability to detect the disease in its early stages.


1981 ◽  
Vol 240 (3) ◽  
pp. R151-R155 ◽  
Author(s):  
E. D. Stevens ◽  
F. G. Carey

Tunas are unusual among fish in that they are warm bodied. In the present essay we argue that one adaptive advantage to being warm is that the warmth increases the rate of delivery of oxygen from the cell boundary to the mitochondria by myoglobin. This argument is supported by the following. 1) Tuna have extremely high rates of oxygen uptake, much higher than other fish and close to the rates achieved by mammals. 2) Tuna have an extraordinary capacity to maintain high cruising speeds for a long time. 3) Tuna have much red muscle that contains a high concentration of myoglobin. 4) The effect of temperature on simple diffusion of oxygen is very small whereas the potential affect on facilitated diffusion by myoglobin is large.


Author(s):  
Sonsoles Díez ◽  
Itziar Miguéliz ◽  
Conchita Tros de Ilarduya

AbstractWe developed a new targeted cationic nanoparticulate system composed of poly(D,L-lactic-co-glycolic acid) (PLGA), 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and asialofetuin (AF), and found it to be a highly effective formulation for gene delivery to liver tumor cells. The nanoparticles (NP) were prepared by a modified solvent evaporation process that used two protocols in order to encapsulate (NP1 particles) or adsorb (NP2 particles) plasmid DNA. The final particles are in the nanoscale range. pDNA loaded in PLGA/DOTAP/AF particles with high loading efficiency showed a positive surface charge. Targeted asialofetuin-nanoparticles (AF-NP) carrying genes encoding for luciferase and interleukin-12 (IL-12) resulted in increased transfection efficiencies compared to free DNA and to plain (non-targeted) systems, even in the presence of 60% fetal bovine serum (FBS). The results of transfections performed on HeLa cells, defective in asialoglycoprotein receptors (ASGPr-), confirmed the receptor-mediated endocytosis mechanism. In summary, this is the first time that asialoglycoprotein receptor targeting by PLGA/DOTAP/DNA nanoparticles carrying the therapeutic gene IL-12 has been shown to be efficient in gene delivery to liver cancer cells in the presence of a very high concentration of serum, and this could be a potential system for in vivo application.


Sign in / Sign up

Export Citation Format

Share Document