scholarly journals Dietary Moutan Cortex Radicis Alters Serum Antioxidant Capacity, Intestinal Immunity and Colonic Microbiota in Weaned Piglets

2020 ◽  
Author(s):  
Miaomiao Bai ◽  
Hongnan Liu ◽  
Shanshan Wang ◽  
Qingyan Shu ◽  
Kang Xu ◽  
...  

Abstract Background: Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as antipyretic, antiseptic and anti-inflammatory agent in China. However, few studies have evaluated the positive effects of MCR, as a new feed additives, on alleviating weaning stress and improving intestinal health and microbiom in pigs. This study aimed to investigate the effect of dietary MCR supplementation on serum antioxidant capacity, intestinal morphology, anti-inflammatory mechanism, and microbiota in weaned piglets.Results: Supplemental 2000 mg/kg and 4000 mg/kg MCR increased (P < 0.05) the final body weight, ADG and ADFI of weaned piglets, and 2000 mg/kg MCR diet significantly decreased (P < 0.05) the F/G ratio and increased (P < 0.05) serum catalase activity compared with CON group. Also, the villus height and crypt depth in the ileum and the concentrations of total SCFA, acetic acid, butyric acid and valeric acid in the colonic contents were higher (P < 0.05) in the 2000 mg/kg and 4000 mg/kg MCR diets than CON group. Dietary MCR supplementation at 4000 mg/kg MCR significantly increased (P < 0.05) total antioxidative capability and the crypt depth in the jejunum but decreased (P < 0.05) the mRNA expression levels of Interferon γ, tumor necrosis factor-α, interleukin-1β, inhibiting kappa B kinase β (IKKβ), inhibiting nuclear factor kappa-B (IκBα) and nuclear factor kappa-B (NF-κB) in the jejunum and ileum. Supplemental 8000 mg/kg MCR had the higher total antioxidative capability and catalase activity in the serum but decreased (P < 0.05) the villus height and crypt depth in the jejunum compared with the CON group. MCR addition reduced (P < 0.05) serum malondialdehyde content, and tended to increase the mRNA expression of zonula occludens-1 in the ileum (P = 0.066) compared to the CON group. Microbiota sequencing identified the microbial richness indices (Chao1, ACE, and observed species), the relative abundances of Firmicutes and Lactobacillus were increased (P < 0.05), and the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae and Enterococcus were reduced (P < 0.05) by MCR supplemented. Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P < 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P < 0.05) by MCR treatment. Conclusions: In antibiotic-free diets, MCR supplementation improved growth performance and serum antioxidant capacity, alleviated intestinal inflammatory by inhibiting IKKβ/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.

2021 ◽  
Vol 8 ◽  
Author(s):  
Miaomiao Bai ◽  
Hongnan Liu ◽  
Shanshan Wang ◽  
Qingyan Shu ◽  
Kang Xu ◽  
...  

Background:Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China.Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota.Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets.Results: Supplemental 4,000 mg/kg MCR significantly increased (P &lt; 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P &lt; 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1β, inhibiting kappa-B kinase β (IKKβ), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P &lt; 0.05) and the relative abundances of Firmicutes and Lactobacillus (P &lt; 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P &lt; 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P &gt; 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P &lt; 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P &lt; 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg.Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKβ/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.


2019 ◽  
Vol 97 (12) ◽  
pp. 4865-4874
Author(s):  
Jun Li ◽  
Lanmei Yin ◽  
Lei Wang ◽  
Jianzhong Li ◽  
Pengfei Huang ◽  
...  

Abstract Vitamin B6 (VB6) is an important coenzyme factor which participates in many metabolic reactions, especially amino acid metabolism. There are few reports on how VB6 mediates weaned piglet intestinal health. This study purposed to investigate dietary VB6 effects on growth, diarrhea rates, and intestinal morphology and function in weaned piglets fed a high-crude protein (22% CP) diet. Eighteen 21-d-old weaned [(Yorkshire × Landrace) × Duroc] piglets with body weights of 7.03 ± 0.15 (means ± SEM) kg were randomly assigned into 3 VB6-containing dietary treatments. Vitamin B6 content was: 0, 4, and 7 mg/kg, respectively. The feeding period lasted 14 d. The results showed that no significant difference existed for the growth performance. The 7 mg/kg VB6 group had a tendency to decrease diarrhea rate (P = 0.065). Blood biochemical parameters analysis demonstrated that total protein, cholesterol, and high-density lipoprotein significantly increased in the 7 mg/kg VB6 group (P &lt; 0.05). In the jejunum, no significant differences were detected for villus height, villus width, crypt depth, villus height and crypt depth ratios, and positive Ki67 counts and the mRNA expression of inflammatory cytokines. Vitamin B6 significantly increased the mRNA expression of SLC6A19 and SLC6A20 (P &lt; 0.05) and decreased the mRNA expression of SLC36A1 (P &lt; 0.05). In the ileum, VB6 significantly increased villus height and villus width (P &lt; 0.05) while decreased positive Ki67 cell counts for 7 mg/kg VB6 group (P &lt; 0.05). Vitamin B6 had significantly increased the mRNA expression of interleukin-1β, tumor necrosis factor-α,cyclo-oxygen-ase-2, and transforming growth factor-β (P &lt; 0.05). Vitamin B6 also had significantly increased mRNA expression of SLC6A19, SLC7A6, SLC7A7, and SLC36A1 (P &lt; 0.05). These findings suggest that dietary supplementation with VB6 may affect the intestinal morphology and absorption and metabolism of protein in weaned piglets fed a high-protein diet by altering the expression of intestinal inflammatory cytokines and amino acid transporters.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fengming Chen ◽  
Houjun Wang ◽  
Jiayi Chen ◽  
Yang Liu ◽  
Wei Wen ◽  
...  

This study was conducted to evaluate the effect of dietary supplementation with Lactobacillus delbrueckii (LAB) on intestinal morphology, barrier function, immune response, and antioxidant capacity in weaned piglets challenged with lipopolysaccharide (LPS). A total of 36 two-line crossbred (Landrace × large Yorkshire) weaned piglets (28 days old) were divided into three groups: (1) nonchallenged control (CON); (2) LPS-challenged control (LPS); and (3) LAB+LPS treatment (0.2% LAB+LPS). Compared to the LPS piglets, the LAB+LPS piglets improved intestinal morphology, indicated by greater (P<0.05) villus height in the duodenum and ileum; villus height : crypt depth ratio in the duodenum, jejunum, and ileum, as well as decreased (P<0.05) crypt depth in the jejunum and ileum; and better intestinal barrier function, indicated by upregulated (P<0.05) mRNA expression of tight junction proteins in the intestinal mucosa. Moreover, compared to the LPS piglets, LAB significantly decreased (P<0.05) concentrations of TNF-α and IL-1β in the small intestine and increased (P<0.05) IL-10 levels in the jejunum and ileum. Additionally, LAB increased (P<0.05) T-AOC activities of the colon, GSH concentrations of the jejunum, and mRNA expression of CAT and Cu/Zn-SOD, while reduced (P<0.05) MDA concentrations in the jejunum and ileum in LPS-changed piglets. Collectively, our results indicate that supplementation of LAB improved intestinal integrity and immune response and alleviated intestinal oxidative damage in LPS-challenged piglets.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fang Wang ◽  
Yexin Yin ◽  
Mei Yang ◽  
Jiashun Chen ◽  
Chenxing Fu ◽  
...  

Because the use of antibiotics is forbidden, piglets experience a considerable weanling stress, resulting in increased incidence of diarrhea and death. Macleaya cordata extract or benzoic acid have anti-inflammatory, antioxidant, and antimicrobial activities that makes them potential antibiotic alternatives. The objective of this study was to evaluate the potential effects of feed supplemented with Macleaya cordata extract and benzoic acid on growth performance, immunity, antioxidant capacity, intestinal morphology, and microflora in weaned piglets. Twenty-four weaned piglets [Duroc × (Large White × Landrace)] 28 days of age and weighing 8.41 ± 0.13 kg were randomly divided in equal numbers (n = 8) into three groups fed a basal diet (CON), CON + 20 mg/kg flavomycin + 50 mg/kg quinocetone (AGP), or CON + 50 mg/kg Macleaya cordata extract + 1,000 mg/kg benzoic acid (MB). Compared with the CON diet, dietary MB or AGP increased the final weight and average daily gain, and reduced feed efficiency and the diarrhea rate (P &lt; 0.05). Compared with the CON diet, MB supplementation increased serum superoxide dismutase (SOD activity) and decreased malondialdehyde (MDA) content (P &lt; 0.05). Serum interleukin (IL)-10 IgA and IgM were higher (P &lt; 0.05) in MB-fed piglets than in CON-fed piglets. Piglets fed the MB diet had greater villus height and villus height to crypt depth ratio (VC) in the duodenum, villus height in the ileum, and lower crypt depth in the jejunum than did piglets given the CON diet (P &lt; 0.5). Piglets in the MB group had increased concentrations of acetate, propionate, butyrate, and total short-chain fatty acids in the ileum or cecum compared with the CON and AGP groups (P &lt; 0.05). Streptococcus proportion was lower in the MB than in the AGP group. Dietary MB increased the Lactobacillus and decreased Escherichia-Shigella populations compared with the CON group (P &lt; 0.05). The study results indicate that MB can be used to replace AGP as a feed supplement for weaned piglets.


Author(s):  
Mei Yang ◽  
Yexin Yin ◽  
Fang Wang ◽  
Xuetai Bao ◽  
Lina Long ◽  
...  

Abstract Rosemary (Rosmarinus officinalis L.) extract (RE) has multiple pharmacological and biological activities, including use as a food additive and medicine. This study was conducted to investigate the effects of dietary RE supplementation on the growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology and microbiota of weaning piglets. A total of 192 crossbred weaned piglets [Duroc × (Large White × Landrace)] (initial body weight = 6.65 ± 0.33 kg, weaned days = 23 ± 1 d) were group housed (six pigs per pen; n = 8 pens/treatment). Pigs were fed a corn-soybean meal-based control diet or the basal diet supplemented with 100, 200 or 400 mg/kg RE. Pigs were allowed ad libitum access to fed for 21-d. The growth performance and apparent total tract digestibility of nutrients, and intestinal morphology and antioxidant status were evaluated. The components of the microbial microflora were also determined in the cecal samples. Compared with the control, dietary supplementation with RE increased the final body weight, average daily gain and average daily feed intake (linear, P = 0.038, 0.016, and 0.009, respectively), and decreased the diarrhea ratio in piglets (linear, P &lt; 0.05). The digestibility of crude protein (linear, P = 0.034) and gross energy (linear, P = 0.046) increased with treatment with RE. Piglets fed RE showed longer villus height (linear, P = 0.037 and 0.028, respectively) and villus height/crypt depth (linear, P = 0.004 and 0.012; quadratic, P = 0.023 and 0.036, respectively) in the jejunum and ileum, in addition to a lesser crypt depth in the jejunum (linear, P = 0.019) and ileum (quadratic, P = 0.042). The addition of RE increased the activity of superoxide dismutase (linear, P = 0.035 and 0.008 respectively) and glutathione peroxidase activity (linear, P = 0.027 and 0.039 respectively), and decreased the content of malondialdehyde (linear, P = 0.041 and 0.013; quadratic, P = 0.023 and 0.005 respectively) in the serum and liver. Dietary RE supplementation, compared with the control, increased the number of Bifidobacterium (linear, P = 0.034) and Bacteroidetes (linear, P = 0.029), while decreased Escherichia coli (linear, P = 0.008; quadratic, P = 0.014) in the cecal contents. Thus, dietary RE supplementation can improve growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology and the microbiota in weaned piglets, and 200 mg/kg may be considered the optimum dosage.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 808
Author(s):  
Dirk Theile ◽  
Lelia Wagner ◽  
Cindy Bay ◽  
Walter Emil Haefeli ◽  
Johanna Weiss

Interferon-alpha (IFN-α) is suggested to cause pharmacokinetic drug interactions by lowering expression of drug disposition genes through affecting the activities of nuclear factor kappa B (NF-ĸB) and pregnane X receptor (PXR). The time-resolved impact of IFN-α 2a (1000 U/mL; 5000 U/mL; 2 h to 30 h) on the activities of NF-ĸB and PXR and mRNA expression (5000 U/mL; 24 h, 48 h) of selected drug disposition genes and on cytochrome P450 (CYP3A4) activity in LS180 cells (5000 U/mL; 24 h, 48 h) was evaluated using luciferase-based reporter gene assays, reverse transcription polymerase chain reaction, and luminescence-based CYP3A4 activity assays. The cross-talk between NF-ĸB activation and PXR suppression was evaluated by NF-ĸB blockage (10 µM parthenolide). IFN-α 2a initially (2 h, 6 h) enhanced NF-ĸB activity 2-fold and suppressed PXR activity by 30%. mRNA of CYP3A4 was halved, whereas UGT1A1 was increased (1.35-fold) after 24 h. After 48 h, ABCB1 expression was increased (1.76-fold). CYP3A4 activity remained unchanged after 24 h, but was enhanced after 48 h (1.35-fold). IFN-α 2a demonstrated short-term suppressive effects on PXR activity and CYP3A4 mRNA expression, likely mediated by activated NF-ĸB. Longer exposure enhanced CYP3A4 activity. Clinical trials should evaluate the relevance by investigating the temporal effects of IFN-α on CYP3A4 using a sensitive marker substrate.


Animals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 422 ◽  
Author(s):  
Li ◽  
Zhang ◽  
Liu ◽  
Yang ◽  
He ◽  
...  

To investigate the effects of the ratio of insoluble fiber to soluble fiber (ISF:SF) on sow performance and piglet intestinal development, we randomly assigned 64 gilts to four treatments comprising diets with the same level of dietary fiber, but different ISF:SF values of 3.89 (T1), 5.59 (T2), 9.12 (T3), and 12.81 (T4). At birth and weaning, six piglets per treatment at each phase were slaughtered for sampling. As ISF:SF increased, the mean piglet body weight (BW) at weaning and piglet BW gain, which were all significantly higher in T1 and T2 compared with T3 and T4 (p < 0.05), showed a linear decrease (p < 0.05); the crypt depth of the jejunum in weaned piglets linearly increased, whereas the duodenal weight, jejunal villus height, and villus height/crypt depth in newborn piglets and enzymatic activity of lactase, sucrase, and maltase linearly decreased (p < 0.05). No differences were observed in the yield and composition of milk (p > 0.05). Moreover, when the ISF:SF was 3.89 in gestation diets, higher piglet BW at weaning occurred, possibly because the ISF:SF affected development and enzymatic activity in the small intestine—effects related to digestion and absorption of nutrients—and consequently enhanced piglet BW gain.


2017 ◽  
Vol 62 (No. 1) ◽  
pp. 15-21
Author(s):  
X. Yue ◽  
L. Hu ◽  
X. Fu ◽  
M. Lv ◽  
X. Han

The effects of dietary chitosan-copper chelate (CS-Cu) on growth performance, diarrhea, intestinal morphology and epithelial cell apoptosis in weaned piglets was investigated. One hundred and sixty Duroc × Landrace × Yorkshire weanling barrows with an average body weight of 7.75 kg were randomly assigned to one of the following dietary treatments: (1) control, (2) 100 mg Cu/kg diet from CuSO<sub>4</sub>, (3) 100 mg Cu/kg diet from CuSO<sub>4</sub> mixed with chitosan (CuSO<sub>4</sub>+CS), (4) 100 mg Cu/kg diet from CS-Cu. The feeding trial lasted for 30 days. The results showed that the pigs receiving a diet containing CS-Cu had higher average daily gain and lower diarrhea incidence than the pigs receiving dietary CuSO<sub>4</sub> and CuSO<sub>4</sub>+CS. Villus height and the ratio of villus height/crypt depth in duodenum, jejunum, and ileum were higher and crypt depth was lower in CS-Cu treated pigs than in pigs fed dietary CuSO<sub>4 </sub>or CuSO<sub>4</sub>+CS. An apparent decrease of ileal epithelial cell apoptosis in pigs fed CS-Cu diet was found. The activities of antioxidant enzymes were higher in pigs fed dietary CS-Cu than in those fed other diets. The results indicated that dietary CS-Cu showed better biological and physiological function in improving small intestinal morphology and reducing diarrhea incidence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuxia Chen ◽  
Yining Xie ◽  
Ruqing Zhong ◽  
Lei Liu ◽  
Changguang Lin ◽  
...  

Xylo-oligosaccharides (XOS) is a well-known kind of oligosaccharide and extensively applied as a prebiotic. The objective of this study was to investigate the effect of XOS supplementation substituting chlortetracycline (CTC) on growth, gut morphology, gut microbiota, and hindgut short chain fatty acid (SCFA) contents of weaning piglets. A total of 180 weaned piglets were randomly allocated to three treatments for 28 days, as follows: control group (basal diet, CON), basal diet with 500 mg/kg (XOS500) XOS, and positive control (basal diet with 100 mg/kg CTC). Compared with the CON group, the piglets in the XOS500 group improved body weight (BW) on days 28, average daily gain (ADG) and reduced feed: gain ratio during days 1–28 (P &lt; 0.05). The XOS500 supplementation increased Villus height and Villus height: Crypt depth ratio in the ileum (P &lt; 0.05). Villus Height: Crypt Depth of the ileum was also increased in the CTC treatment group (P &lt; 0.05). Meanwhile, the XOS500 supplementation increased significantly the numbers of goblet cells in the crypt of the cecum. High-throughput 16S rRNA gene sequencing revealed distinct differences in microbial compositions between the ileum and cecum. XOS500 supplementation significantly increased the bacterial diversity. However, CTC treatment markedly reduced the microbial diversity (P &lt; 0.05). Meanwhile, XOS500 supplementation in the diet significantly increased the abundance of Lactobacillus genus compared to the CON and CTC group in the ileum and cecum (P &lt; 0.01), whereas the level of Clostridium_sensu_stricto_1, Escherichia-Shigella, and Terrisporobacter genus in the XOS500 group were markedly lower than the CON and CTC group (P &lt; 0.05). In addition, dietary supplementation with XOS500 significantly increased the total short-chain fatty acids, propionate and butyrate concentrations and decreased the acetate concentration compared to the CON group in the cecum (P &lt; 0.05). In summary, dietary supplemented with XOS500 could enhance specific beneficial microbiota abundance and decrease harmful microbiota abundance to maintain the structure of the intestinal morphology and improve growth performance of weaned piglets. Thus, XOS may potentially function as an alternative to in-feed antibiotics in weaned piglets in modern husbandry.


Sign in / Sign up

Export Citation Format

Share Document