Laser Assisted Micro Grinding of Titanium
Abstract Laser assisted micro-grinding (LAMG) is an emerging area of research in the field of high-quality micro-job fabrication and performance improvement. Conventional micro grinding (CMG) by micro pencil grinding tool suffers drawbacks such as tool deflection, higher cutting force and poor surface finish. In the present work, authors have attempted to investigate the performance of LAMG and CMG in the fabrication of micro-channel on Titanium material. Surface of workpiece was structured with the help of air assisted nanosecond-pulsed fiber laser scanning prior to the CMG at the different values of laser power by keeping scanning velocity constant. During the study, the CMG forces were recorded and after the processes surface roughness of the fabricated microchannels was measured. Results have shown reduction in the magnitude of the normal and tangential force by 31 % and 44 %, respectively, in LAMG compared to the CMG. In addition to that better surface finish was observed in LAMG than CMG. The surface roughness of micro-channel and grinding forces were found to be dependent on the power density of laser. Increase in the laser power deteriorates the surface finish and reduces the magnitude of grinding forces. High grinding forces in the CMG led to the dynamic deflection of the grinding wheel which produced the vibration in the process. The excessive vibration in CMG processes exploited the surface finish of the micro-channel. Such vibration was not observed on the LAMG process; as a result, better dimensional accuracy and surface finish of the channel was found.