scholarly journals Integrated analysis of land-use, energy and water systems for ethanol production from sugarcane in Bolivia

2020 ◽  
Author(s):  
Jenny Gabriela Pena Balderrama ◽  
Dilip Khatiwada ◽  
Francesco Gardumi ◽  
Thomas Alfstad ◽  
Silvia Ulloa Jimenez ◽  
...  

Abstract The use of biomass for renewable energy production is one alternative to reduce the environmental impacts of energy production worldwide. Sugarcane-based ethanol is one of the most widespread biofuels in the road transport sector and its development has been encouraged by strong incentives on production and use in several countries. The growing realization on the environmental impacts of ethanol production indicates the need to increase the efficient utilization of biomass resources by optimizing the production chain sustainably. This paper evaluates enhancements in the ethanol production chain quantitatively by identifying opportunities for agricultural intensification and investments in advanced biorefineries in a least-cost optimization model. Results of our model show that significant cost and environmental benefits can be achieved by modernizing sugarcane agriculture in Bolivia. Demands for ethanol and sugar can be met cost-effectively by increasing sugarcane yields from the current country-average of 55.34 ton/ha to 85.7 ton/ha in 2030 with a moderate cropland expansion of 11.4 thousand hectares in the period 2019-2030. Our results further suggest that it is cost-optimal to invest in efficient cogeneration in biorefineries to maximize the renewable energy output and the economic benefits of sugarcane ethanol. Finally, biofuel support in the range of 8-10 US$/GJ is required for investments in second-generation ethanol in biorefineries to be cost-competitive in the medium-term..


2020 ◽  
Author(s):  
Jenny Gabriela Pena Balderrama ◽  
Dilip Khatiwada ◽  
Francesco Gardumi ◽  
Thomas Alfstad ◽  
Silvia Ulloa Jimenez ◽  
...  

Abstract The use of biomass for renewable energy production is one alternative to reduce the environmental impacts of energy production worldwide. Sugarcane-based ethanol is one of the most widespread biofuels in the road transport sector and its development has been encouraged by strong incentives on production and use in several countries. The growing realization on the environmental impacts of ethanol production indicates the need to increase the efficient utilization of biomass resources by optimizing the production chain sustainably. This papers evaluates enhancements in the ethanol production chain quantitatively by identifying opportunities for agricultural intensification and for investments in advanced biorefineries in a least-cost optimization model. Results of our model show that significant cost and environemtal benefits can be achieved by modernizing sugarcane agriculture in Bolivia. Demands for ethanol and sugar can be met cost-effectively by increasing sugarcane yields from the current country-average of 55.34 ton/ha to 85.7 ton/ha in 2030 with a moderate cropland expansion of 14.4 thousand hectares in the period 2019-2030. Our results further suggest that it is cost-optimal to invest in current technological advancements in efficient cogeneration to maximize the renewable energy output and the economic benefits of sugarcane ethanol. Finally, biofuel support in the range of 8-10 US$/GJ is required for investments in second-generation ethanol to be cost-competitive in the medium-term.



Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7525
Author(s):  
Mariusz Niekurzak

The aim of the manuscript was to present the collective results of research on the profitability of using various renewable sources in Poland with the greatest development potential. In the paper, the economic parameters of various investment projects were determined and calculated, i.e., Net Capital Value (NPV), Internal Rate of Return (IRR) and the Period of Return on Invested Capital (PBT). The economic assessment of the use of RES technologies was supplemented with the assessment of environmental benefits. The ecological criterion adopted in the study was the assessment of the potential and costs of reducing greenhouse gas emissions as a result of replacing fossil fuels with renewable energy technologies. On the basis of the constructed economic model to assess the profitability of investments, it has been shown that the analyzed projects will start to bring, depending on their type and technical specification, measurable economic benefits in the form of a reduction in the amount of energy purchased on an annual basis and environmental benefits in the form of reduction of carbon dioxide emissions to the atmosphere. Moreover, the calculations show a high potential for the use of certain renewable sources in Poland, which contributes to the fulfillment of energy and emission obligations towards the EU. The analyzes and research of the Polish energy market with the use of the presented models have shown that the project is fully economically justified and will allow investors to make a rational decision on the appropriate selection of a specific renewable energy source for their investment. The presented economic models to assess the profitability of investments in renewable energy sources can be successfully used in other countries and can also be a starting point for a discussion about the direction of energy development. Due to the lack of collective, original and up-to-date research on the domestic market, the manuscript provides the reader with the necessary knowledge regarding the legitimacy of using renewable energy sources, investment and environmental profitability.



2020 ◽  
Vol 12 (9) ◽  
pp. 3582
Author(s):  
Sungwoo Lee ◽  
Sungho Tae

Multiple nations have implemented policies for greenhouse gas (GHG) reduction since the 21st Conference of Parties (COP 21) at the United Nations Framework Convention on Climate Change (UNFCCC) in 2015. In this convention, participants voluntarily agreed to a new climate regime that aimed to decrease GHG emissions. Subsequently, a reduction in GHG emissions with specific reduction technologies (renewable energy) to decrease energy consumption has become a necessity and not a choice. With the launch of the Korean Emissions Trading Scheme (K-ETS) in 2015, Korea has certified and financed GHG reduction projects to decrease emissions. To help the user make informed decisions for economic and environmental benefits from the use of renewable energy, an assessment model was developed. This study establishes a simple assessment method (SAM), an assessment database (DB) of 1199 GHG reduction technologies implemented in Korea, and a machine learning-based GHG reduction technology assessment model (GRTM). Additionally, we make suggestions on how to evaluate economic benefits, which can be obtained in conjunction with the environmental benefits of GHG reduction technology. Finally, we validate the applicability of the assessment model on a public building in Korea.



2021 ◽  
Vol 9 ◽  
Author(s):  
Mariusz Niekurzak ◽  
Ewa Kubińska-Jabcoń

Background: The growing consumption is what drives the development of unsustainable energy and material-intensive production technologies that emit large quantities of pollutants into the atmosphere, water, and land. Obtaining green energy allows reduction of the interference with the environment and, consequently, fits into a sustainable energy development strategy. In order to achieve the emission targets set by the EU for Poland, it is necessary to prioritize the development of renewable energy sources (RES) technologies within the energy sector.Methods: The purpose of the study was to present the results of the research relating to the return on investment of solar collectors for single-family houses in Poland. The research was presented on the basis of the legal conditions applicable to micro installations in the light of the amendment of the RES Act, and the impact of these amendments on the aspects of such investment was determined.Results: On the basis of the constructed economic model used to assess the return on investment of increasing the area of solar collectors, it has been shown that an operating installation will bring measurable economic benefits in the form of reduction in the amount of energy purchased annually in the amount of 6,756 kWh and environmental benefits in the form of reduction of carbon dioxide emissions to the atmosphere 2.4–3.6 Mg per year. An installation subsidized under the “My Electricity” program can reach an NPV of EUR 6,000 over 20 years at a discount rate r = 0 and assuming that the electricity is EUR 0.15/kWh. If the price rises to 0.2 EUR/kWh, the NPV will be 10,000 EUR. For the analyzed installation, the investment consisting in increasing the collector area in accordance with NPV is economically effective for the absorber area in the range of 5.6–7.6 m2 and reaches the maximum value for the absorber area of 6.6 m2, while the absorber area above 7 m2 contributes to reduce the value of the economic return on investment. The obtained results have been generalized, which allows to use them in the process of selecting the size of collector area for similar installations.Conclusion: The return on investment analysis carried out in respect of a detached house allowed to demonstrate that this project is fully justified. Furthermore, pursuant to the Renewable Energy Sources Act in force in Poland, treating a small entrepreneur as a prosumer who may generally take advantage of favorable conditions for discounting the produced energy leads to very favorable possibilities of settling electricity. Considering an entrepreneur as a prosumer who may use one-off depreciation of a solar collectors installation as a fixed asset and request for VAT refund is what makes such an investment very attractive in financial terms and makes it difficult to find a safe investment alternative characterized by such a high rate of return.



2021 ◽  
Vol 4 (S2) ◽  
Author(s):  
Tayenne Dias de Lima ◽  
John F. Franco ◽  
Fernando Lezama ◽  
João Soares ◽  
Zita Vale

AbstractIn the coming years, several transformations in the transport sector are expected, associated with the increase in electric vehicles (EVs). These changes directly impact electrical distribution systems (EDSs), introducing new challenges in their planning and operation. One way to assist in the desired integration of this technology is to allocate EV charging stations (EVCSs). Efforts have been made towards the development of EVCSs, with the ability to recharge the vehicle at a similar time than conventional vehicle filling stations. Besides, EVs can bring environmental benefits by reducing greenhouse gas emissions. However, depending on the energy matrix of the country in which the EVs fleet circulates, there may be indirect emissions of polluting gases. Therefore, the development of this technology must be combined with the growth of renewable generation. Thus, this proposal aims to develop a mathematical model that includes EVs integration in the distribution system. To this end, a mixed-integer linear programming (MILP) model is proposed to solve the allocation problem of EVCSs including renewable energy sources. The model addresses the environmental impact and uncertainties associated with demand (conventional and EVs) and renewable generation. Moreover, an EV charging forecast method is proposed, subject to the uncertainties related to the driver's behavior, the energy required by these vehicles, and the state of charge of the EVs. The proposed model was implemented in the AMPL modelling language and solved via the commercial solver CPLEX. Tests with a 24-node system allow evaluating the proposed method application.



Logistics ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 19 ◽  
Author(s):  
Techane Bosona ◽  
Girma Gebresenbet

The utilization of agricultural prunings as renewable energy sources requires effective and efficient logistics systems. The objective of this paper was to map out logistics activities along the agricultural pruning-to-energy (PtE) value chains. It describes the logistics performances based on the existing and potential pruning biomass supply chains focusing on prunings from fruit tree, vineyards, olive groove, and up-rooted tree branches. A logistics audit analysis approach has been used for detailed assessment of logistics performances. The analysis was based mainly on primary data gathered using a structured data survey format targeting the existing and potential PtE initiatives in Spain, Germany, Denmark, France, and Poland. The analysis considered the major stages of the chain, such as pruning, harvesting, processing (e.g., baling and chipping), storage, transport, and the linkage between the different stages. The paper identified the constraints along the logistics chain and recommended appropriate interventions to promote the marketing of agricultural pruning focusing on the supply of quality bales and chips for renewable energy production, and to increase the sustainability of renewable energy generation from PtE initiatives. The study has indicated that there are economic, social, and environmental benefits of PtE initiatives, as well as opportunities to increase the implementation and sustainability of the system.



Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 528 ◽  
Author(s):  
Francesco Rossini ◽  
Maria Elena Provenzano ◽  
Ljiljana Kuzmanović ◽  
Roberto Ruggeri

Recently, biofuels have become a strategic focus to reduce vehicle emissions and increase sustainability of the transport sector. However, the sustainability of biofuels production has been questioned owing to its implications for future land footprint. In this respect, the EU Commission has very recently classified as low indirect land-use change (ILUC)–risk biofuels those obtained by crops grown on marginal lands and with low external inputs. Only few crops can reach high yields under both of these conditions across Europe. From this point of view, Jerusalem artichoke (Helianthus tuberosus L.) is certainly a species worthy of remark since it has all the attributes to accomplish the aims of the updated EU Renewable Energy Directive (RED II). Starting from physiological aspects, the present review examines and summarizes literature on the ecology, genetic resources, agronomic practices and sustainability of this species. The goal is to point out the recent advances of research in Jerusalem artichoke (JA) potential as alternative biofuel feedstock and to identify what is still needed to better characterize its environmental benefits and agronomic performance.



Author(s):  
Rosaria Ciriminna ◽  
Francesco Meneguzzo ◽  
Mario Pecoraino ◽  
Mario Pagliaro

Solar green roofs, namely rooftops functionalized with properly selected living vegetation and photovoltaic modules, achieve an ideal symbiotic relationship in which promotion of biodiversity and onsite renewable energy production are both enhanced whereas the roof provides a wide range of environmental, health, aesthetic and economic benefits. This study provides a unified outlook of this eminent sustainable technology at the dawn of its uptake across the world, especially in polluted urban areas.



2021 ◽  
Author(s):  
Elizabeth Bich Ngoc Nguyen

This research focuses on the environmental impacts related to the manufacturing of solar photovoltaic (PV) technology. The life cycle assessment (LCA) method was used to assess the environmental impacts for a CS6XVP module. The current supply chain, based in China, was compared to a hypothetical Ontario based supply chain to determine environmental and economic costs. LCA results showed that the manufacturing of modules in Ontario reduced primary energy demands by 22% and GHG emission by 88%. Moreover, the carbon difference between supply chains equated to $5.84 per module. This leads to the conclusion that there are clear environmental benefits to manufacturing PV technology in Ontario; however, the economic benefits of carbon costing are not significant enough to encourage a complete shift in the current supply chain. It is suggested that a change in carbon policy could help to support the development of PV manufacturing and other renewable energy technologies in Ontario.



Sign in / Sign up

Export Citation Format

Share Document