AC-Induced Bias Potential Effect on Corrosion of Steels

2009 ◽  
Author(s):  
J. E. Jackson ◽  
A. N. Lasseigne ◽  
D. L. Olson ◽  
B. Mishra

Objective: the present study was aimed to evaluate the role of pharmaceutical services in improving the outcome of mineral bone disorder in patients with advanced chronic kidney disease. Methodology: One hundred and twenty patients with chronic kidney disease-mineral bone disorder (CKD-MBD) screened for eligibility, seventy-six patients enrolled in the study and randomly allocated into two groups: pharmaceutical care and usual care, both groups interviewed by the pharmacist using specific questionnaire for assessing the quality of life (QoL). All the drug related problems (DRPs) including drug-drug interactions (DDIs) were recorded by the pharmacist. Blood samples were collected and utilized for analyzing the levels of vitamin D, phosphorous, calcium, albumin and parathyroid hormone at baseline and three months after. The pharmaceutical care group received all the educations about their medications and how to minimize DRPs; improve the QoL. Additionally, the pharmaceutical intervention included correcting the biochemical parameters. Results: Pharmaceutical care significantly improved patients QoL and minimized DRPs and DDIs. It was also effective in improving the biochemical parameters. Conclusion: Pharmaceutical care has a positive impact on improving the outcome of patients with CKD-MBD through attenuating DRPs, improving the biochemical parameters and the QoL.


2020 ◽  
Vol 21 (3) ◽  
pp. 206-218 ◽  
Author(s):  
Sadia Nazer ◽  
Saiqa Andleeb ◽  
Shaukat Ali ◽  
Nazia Gulzar ◽  
Tariq Iqbal ◽  
...  

Background: Multi-drug resistance in bacterial pathogens is a major concern of today. Green synthesis technology is being used to cure infectious diseases. Objectives: The aim of the current research was to analyze the antibacterial, antioxidant, and phytochemical screening of green synthesized silver nanoparticles using Ajuga bracteosa. Methods: Extract of A. bracteosa was prepared by maceration technique. Silver nanoparticles were synthesized using A. bracteosa extract and were confirmed by UV-Vis spectrophotometer, Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The antibacterial, anti-biofilm, cell proliferation inhibition, TLC-Bioautography, TLC-Spot screening, antioxidant, and phytochemical screening were also investigated. Results: UV-Vis spectrum and Scanning electron microscopy confirmed the synthesis of green nanoparticles at 400 nm with tube-like structures. FTIR spectrum showed that functional groups of nanoparticles have a role in capping and stability of AgNP. Agar well diffusion assay represented the maximum antibacterial effect of ABAgNPs against Escherichia coli, Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Pseudomonas aeruginosa at 0.10 g/mL concentration compared to ABaqu. Two types of interactions among nanoparticles, aqueous extract, and antibiotics (Synergistic and additive) were recorded against tested pathogens. Crystal violet, MTT, TLC-bio-autography, and spot screening supported the findings of the antibacterial assay. Highest antioxidant potential effect in ABaqu was 14.62% (DPPH) and 13.64% (ABTS) while 4.85% (DPPH) and 4.86% (ABTS) was recorded in ABAgNPs. Presence of phytochemical constituents showed pharmacological importance. Conclusion: It was concluded that green synthesis is an innovative technology in which natural products are conjugated with metallic particles and are used against infectious pathogens. The current research showed the significant use of green nanoparticles against etiological agents.


2012 ◽  
Vol 10 (5) ◽  
pp. 639-646 ◽  
Author(s):  
Cecilia Chighizola ◽  
Tommaso Schioppo ◽  
Francesca Ingegnoli ◽  
Pier Luigi Meroni

2020 ◽  
Vol 16 (6) ◽  
pp. 774-781
Author(s):  
Liang Wu ◽  
An Kang ◽  
Yujie Lin ◽  
Chenxiao Shan ◽  
Zhu Zhou ◽  
...  

Background: Ilexsaponin A1, one of the most representative triterpene saponin components in the roots of I. pubescens, showed its effects in anticoagulation and antithrombosis, attenuating ischemia-reperfusion-induced myocardial, angiogenesis and inhibiting phosphodiesterase. Objective: Reveal the key intestinal bacterial strains responsible for ilexsaponin A1 metabolism, and clarify their metabolic behavior. Methods: An accurate and sensitive LC-MS/MS method for the determination of “ilexsaponin A1 in General Anaerobic Medium (GAM) broth” was established and systematically validated. Then it was applied to screen and study the metabolic potential of the intestinal bacterial strains in an anaerobic incubation system. Results: Quantitation of ilexsaponin A1 could be performed within an analytical run time of 14.5 min, in the linear range of 2 - 2000 ng/ml. Enterobacter sakazakii, Bifidobacterium breve, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Bifidobacterium angulatum were identified to have a potential effect to metabolize ilexsaponin A1 to different extents; and further bacterial metabolic studies were performed to clarify their metabolic capacity and behavior. Conclusion: This paper contributes to a better understanding of the intestinal bacterial metabolism of ilexsaponin A1 and provides scientific evidence for its clinical application. Additionally, the importance of intestinal bacterial strains in the disposition of natural products was also highlighted.


2019 ◽  
Vol 15 ◽  
Author(s):  
Surekha Rani ◽  
Anupma Marwaha ◽  
Sanjay Marwaha

Background: Advancement in wireless communication technology has raised today’s living standards but consequently leads to the problems of electromagnetic (EM) air pollution as well as spectrum congestion particularly in radio frequency band. To overcome traffic congestion problem in lower bands, terahertz frequency bands are explored but EM pollution still persists as global issue which can be addressed by a tunable microwave absorber. At THz frequencies, 2-D nanostructured graphene has been observed to be less lossy than using other materials and further finds its most interesting applications on account of the plasmonic mode supported by graphene resulting in extreme device miniaturization. At micro and mm-waves graphene is resistive hence can be electronically controlled, ensuring its suitability for the design of tunable microwave absorber. Objective: Designing of a frequency reconfigurable or frequency tunable absorber is the prime objective of current work. Two-dimensional graphene absorber has been proposed here having inherent bandgap tunability property which means the electromagnetic properties of graphene can be controlled via varying external bias potential. Methods: The numerical modelling of graphene microwave absorber utilizing bulk graphene backed by glass and perfect electric conductor layer is reported in this paper. Finite element Method (FEM) based high frequency structure simulator (HFSS) platform is used to simulate the graphene absorber model. The whole structure is placed into a rectangular waveguide with two ports for absorber excitation. Results: The variation of electromagnetic properties of graphene absorber is achieved by changing bias potential and further the absorption tunability for the designed absorber is investigated in the range from 2 GHz to 18 GHz. From reflection coefficient curves, it is authenticated that -72.6 dB reflection coefficient dip has been obtained at 14 GHz for 5 volt bias potential which shifts to higher side of frequency as the potential changes from 5 volts to 25 volts. Conclusion: The results show that by increasing bias potential, absorption coefficient shifts to higher frequency and proves to be a tunable wideband absorber whose resonant frequency can changed from one value to another without changing thickness or material properties of absorber thus can effectively incorporate with antenna substrate or surface of radar.


2018 ◽  
Vol 18 (6) ◽  
pp. 875-881 ◽  
Author(s):  
Xue Zhu ◽  
Ke Wang ◽  
Kai Zhang ◽  
Yi Pan ◽  
Fanfan Zhou ◽  
...  

Background: Retinoblastoma is the most common intraocular malignant tumor in childhood. Although external beam radiation and enucleation are effective to control retinoblastoma, eye salvage and vision preservation are still significant challenges. Polyphyllin I (PPI), a natural compound extracted from Paris polyphylla rhizomes, has a wide range of activities against many types of cancers. However, the potential effect of this herbal compound on retinoblastoma has not yet been investigated. Method: In the present study, we evaluated the cytotoxic effect of PPI on human retinoblastoma Y-79 cells as well as its underlying molecular mechanism. Our results indicated that PPI treatment significantly inhibited cell proliferation, arrested the cell cycle at G2/M phase and induced cell apoptosis of Y79 cells through the mitochondrial- dependent intrinsic pathway. Moreover, p53 is involved in PPI-induced cytotoxicity in human retinoblastoma Y-79 cells. Exposure to 10 μM PPI for 48 h dramatically induced the expression levels of p53, phosphorylated- p53 and acetylated-p53. Furthermore, blockade of p53 expression effectively attenuated PPI-induced cell cycle arrest and cell apoptosis in Y-79 cells. Result: These results demonstrated that PPI exhibits anti-proliferation effect on human retinoblastoma Y-79 cells through modulating p53 expression, stabilization and activation. This information shed light on the potential application of PPI in retinoblastoma therapy.


Sign in / Sign up

Export Citation Format

Share Document