scholarly journals Thermochemical conversion of grinded pressed plant biomass

Author(s):  
А.А. Спицын ◽  
И.И. Белоусов ◽  
Т.Б. Турсунов ◽  
В.А. Хен

Рассмотрены аппарат уплотнения с частичной химической переработкой сырья и инновационная технология получения гранулированного активированного углеродсодержащего продукта и жидкого биотоплива методом уплотнения (пеллетирования) предварительно измельченного сырья, ускоренного гидролиза, пиролиза, с последующей активацией. Приведены результаты апробации технологии на стендовых установках и аппаратах. Показано, что по- лученные гранулы соответствуют основным показателям отечественных и за- рубежных стандартов на пеллеты из растительного сырья. В процессе произ- водства протекает химическая модификация исходного сырья, на что указывает повышенное значение содержания лигнина в образцах. При проведении пиро- лиза полученных пеллет производятся гранулированный углистый остаток, жидкое биотопливо и горючая парогазовая смесь. Из гранулированного угли- стого остатка получены активированные угли, имеющие адсорбционную активность по йоду, сравнимую с древесным углем марки ДАК. Одним из направлений дальнейших исследований является подбор различных добавок в сырье перед проведением уплотнения и грануляции для улучшения свойств пеллет, в частности повышения теплотворной способности и уменьшения зольности. Однако наиболее интересное направление использования уплотненных отходов растительной биомассы в виде пеллет – в качестве сырья для термохи- мической переработки с целью получения энергетически плотных продуктов, в частности пиролиза. Исследование показало целесообразность разработки единой автономной технологии переработки отходов растительной биомассы с по- лучением конкурентно-способных товарных продуктов: гранулированных активированных углей, жидкого биотоплива, а также парогазовой смеси с достаточной теплотворной способностью для обеспечения работы специальных топочных устройств. The paper deals with the sealing machine with partial chemical processing of raw materials and the innovative technology for obtaining granular activated carbon- containing product and liquid biofuel by the method of compaction (pelletizing) of pre-crushed raw materials, accelerated hydrolysis, pyrolysis and subsequent activation. The results of approbation of the technology on bench installations and devices are presented. It is shown that the obtained pellets correspond to the main indicators of domestic and foreign standards for pellets from vegetable raw materials. In the production process, a chemical modification of the feedstock takes place, as indicat- ed by the increased value of lignin content in the samples. When pyrolysis of the pellets is produced, a granular carbonaceous residue, liquid biofuel, and a combustible gas-vapor mixture are produced. From the granular carbonaceous residue, activated carbons with an adsorption activity of iodine comparable to charcoal of the DAK brand were obtained. One of the directions of further research is the selection of various additives into the raw material before compaction and granulation to improve the properties of pellets, in particular, to increase the calorific value and to reduce ash content. However, the most interesting direction of using compacted biomass res- idue in the form of pellets is to use as a raw material for thermochemical processing in order to obtain energetically dense products, in particular pyrolysis. The work showed the expediency of developing a single autonomous technology for plant biomass residues processing with the production of competitive commodity products: granular activated carbons, liquid biofuel, as well as steam-gas sweep with sufficient calorific value to ensure the operation of special combustion devices.

2021 ◽  
Author(s):  
Sergey Vasilevich ◽  
Dmitry Degterov

The paper describes methods for producing charcoal (highly porous carbon materials) based on plant (wood) raw materials, and the equipment used to implement these processes, the use of activated carbons. The paper describes results of an experimental study of the effect of pressure on the formation of charcoal in the pyrolysis of birch chips. The experimental investigation was carried out at pressures of 0.1, 0.3, 0.5, 0.7 MPa. To investigate the effect of pressure on the pyrolysis process, a laboratory bench was designed and constructed. It was found that increasing the pressure from 0.1 MPa to 0.7 MPa increases the yield of charcoal from 25.1 to 32.4% by weight (relative to the dry weight of the starting material) and the carbon content from 89.1% by weight at 0.1 MPa to 96.4% by weight at 0.7 MPa. The calorific value of charcoal decreases from 34.86 MJ/kg at a pressure of 0.1 MPa to 30.23 MJ/kg at a pressure of 0.7 MPa. This is due to the release of oxygen-containing components, which have a higher calorific value than pure carbon, from the porous coal structure. Reduction of the charcoal heat combustion with a decrease in the amount of oxygen-containing components confirms conclusion that their calorific value exceeds the calorific value of pure carbon.


2020 ◽  
Vol 169 ◽  
pp. 02006
Author(s):  
Gennady Kalabin ◽  
Vasilii Vasil’ev ◽  
Vasilii Ivlev ◽  
Vasilii Babkin

Environmental monitoring and assessment of the prospects for extracting biologically active substances (BAS) from various types of plant biomass requires the development of simple and fast methods for measuring their content in raw materials. A new approach for measuring the content of various flavonoids groups in plant raw material using 1H NMR spectroscopy has been developed, which allows to characterize its resource capabilities and study the effects on their composition different environmental factors without complex sample preparation and standard samples.


2019 ◽  
Vol 48 (3) ◽  
pp. 547-557
Author(s):  
Hui-Jin Liu ◽  
Li Zhang ◽  
Yan-Nian Xu ◽  
Xiao-Ping Zhang ◽  
Xiao-Hong Li

The bark of Pteroceltis tatarinowii Maxim., an endemic tree in Ulmaceae, is the main raw material for manufacturing Xuan Paper which is widely used in calligraphy and painting field. The characteristics of P. tatarinowii bark is the main limiting factor for the quality of Xuan Paper specially the content of cellulose and lignin. The molecular basis related to cellulose and lignin synthesis in P. tatarinowii would be helpful to understand and seek higher quality raw materials for Xuan Paper. RNA-seq was utilized to reveal transcriptome differences in P. tatarinowii from three far isolated localities (AL, JX and XA) under different climate environments. A total of 290 million reads were generated for further analysis in three libraries. In total, 2,850, 2,038 and 1,986 DEGs were identified in XA, JX and AL, respectively. Compared with the sample from XA, there were 822 up-regulated and 1706 down-regulated in AL sample. AL sample has 611 up-regulated genes and 647 down-regulated genes in comparison with JX sample. Comparing XA and JX samples, 443 were up-regulated and 1,783 were down-regulated in XA. Three samples had similar GO enrichment patterns. There were 19 and 9 genes identified as CESA and CSL (E-value less than 1.0E-20), respectively. Although no significant expression differences were found in three samples, KOB1, GPI-anchored protein gene and CTL1 were differently expressed, and KOB1 and GPI-anchored protein gene were up-regulated in JX. A number of the unigenes (474) that were involved in ‘phenylpropanoid biosynthesis’, were mostly not differently expressed. Only a few genes annotated as PAL, 4CL, C4H and CAD were significantly different in expression. In AL, 3 CAD and 1 PAL were up-regulated, whereas 6 CAD, 3 4CL and 1 HCT were up-regulated in XA, and 1 PAL, 2 4CL, 2 C4H in JX. JX sample had the highest cellulose content and XA sample had the highest lignin content, which being consistent with the hierarchical cluster analysis of differently expressed genes. Differences in the expression of these genes might influence the cellulose and lignin content.


World Science ◽  
2018 ◽  
Vol 1 (12(40)) ◽  
pp. 46-48
Author(s):  
Guram Khitiri ◽  
Ioseb Chikvaidze ◽  
Raul Kokilashvili ◽  
Tinatin Gabunia ◽  
Madona Tsurtsumia

One of the main objectives of the project is to develop a methodology for obtaining high quality water-proofing materials. The above- mentioned high-melting tar mass will be used as the main raw material. Especial treatment and further homogenization of the mass – mixture of high-dispersive quartz sand, silicates and other wastes – gives possibility to make various universal and inexpensive compositions. With the aim to improve hydro-insulating and other specific characteristics of the compositions they will be varied by changing the ratio of ingredients. The elasticity of these compositions is conditioned by macromolecular paraffin-ceresin and the polymeric (rubber) components; varying the strength and adhesion is possible by soluble and insoluble silicate-quartz components. The mentioned components can be got in a large amount in region. Therefore, products obtained from cheap raw materials will be inexpensive. The use of the mentioned waste is also important to avoid the pollution of nature. Operating characteristics of the proposed luminophore satisfy requirements of international standarts. In particular, the solutions made from it have an ability to detect invisible cracks of the thick < 1 mm. The light intensity in its greenish-yellow area is 4,5-5 times more than that of standard - uranyl nitrate. It is stable with high quantum efficiency (40-45%).


2021 ◽  
Vol 55 (5-6) ◽  
pp. 501-510
Author(s):  
ZHIJUN HU ◽  
XINYU CAO ◽  
DALIANG GUO ◽  
YINCHAO XU ◽  
PING WU ◽  
...  

Cellulose nanowhiskers (CNWs) from plant biomass are of considerable interest, primarily due to their low density, biodegradability, mechanical strength, economic output, and renewability. Here, a new pretreatment method has been developed to produce CNWs based on supercritical CO2 and ethanol. The raw material was micro-fibrillated cellulose (MFC) and experimental factors were controlled to enhance the properties of CNWs produced using a ball-milling technique following supercritical CO2 pretreatment. Cellulose nanofibers (CNFs) were also prepared using a high-pressure Microfluidizer©. A comparative study was conducted of the properties of the raw materials, the CNWs and the CNFs. The solid yields of P-MFC after supercritical CO2 pretreatment gradually decreased, along with the temperature and the reaction time. Scanning electron microscopy (SEM) images of the CNWs and CNFs show that the morphology of the CNWs was basically acicular, while that of the CNFs was mainly soft fibrous. Thermogravimetric analysis results suggest that the thermal stability of the CNWs was substantially higher than those of the CNFs and the raw material. XRD results indicate that the crystallinity showed an initial increasing trend and then declined with increasing temperature and reaction time, and the crystallinity value of CNWs was higher than that of CNFs. The smaller CNWs became rougher and had a larger surface area.


2019 ◽  
pp. 403-411
Author(s):  
Olga Babich ◽  
Olga Krieger ◽  
Evgeny Chupakhin ◽  
Oksana Kozlova

The increasing shortage of fossil hydrocarbon fuel dictates the need to search for and develop alternative energy sources, including plant biomass. This paper is devoted to the study of the Miscanthus plants biomass potential and the analysis of technologies of its processing into products targeted at bioenergy, chemistry, and microbiology. Miscanthus is a promising renewable raw material to replace wood raw materials for the production of chemical, fuel, energy, and microbiological industries. Miscanthus is characterised by highly productive (up to 40 tons per one hectare of dry matter) C4-photosynthesis. Dry Miscanthus contains 47.1–49.7% carbon, 5.38–5.92% hydrogen, and 41.4–44.6% oxygen. The mineral composition includes K, Cl, N and S, which influence the processes occurring during biomass combustion. The total amount of extractives per dry substance lies in the range of 0.3–2.2 % for different extraction reagents. Miscanthus has optimal properties as an energy source. Miscanthus × giganteus pellets showed the energy value of about 29 kJ/g. For the bioconversion of plants into bioethanol, it is advisable to carry out simultaneous saccharification and fermentation, thus reducing the duration of process steps and energy costs. Miscanthus cellulose is of high quality and can be used for the synthesis of new products. Further research will focus on the selection of rational parameters for processing miscanthus biomass into products with improved physical and chemical characteristics: bioethanol, pellets, industrial cellulose, bacterial cellulose, carbohydrate substrate.


Eksergi ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 13
Author(s):  
Sri Wahyu Murni ◽  
Tutik Muji Setyoningrum ◽  
Muhamad Maulana Azimatun Nur

Indonesia biomass waste is a potential feedstock as a source of renewable energy since it can be converted into carcoal briquettes. However, the production of the briquettes using pyrolysis process using the agricultural waste was lacking. In this research, briquette was made from palm shells,  corncob and soybean stem wood due to its high availability and have high cellulose content. The purpose of this research was to produce briquettes from three kind of raw materials by employing pyrolysis process and compared the characteristics. The briquette was made from different type of raw materials (palm shells, corncob and soybean stem) and  the concentration of binder : 3-7 %. Pyrolysis was done at  500 °C, and 100 kg / cm2 of pressing pressure. Results showed that, the best charcoal briquette was achieved from palm shells by using 5% binder, which resulted 4,1% moisture content, 3.4% ash content,  15% volatile matter content, 77.5% carbon content,  7075 cal/g calorific value and  1.4 kg/cm2 compresive strength. It is found that the concentration of binder and raw material influenced the quality of the briquettes. In overall, the production of the briquettes by employing pyrolysis method could meet the standard.


2019 ◽  
Vol 2 (1) ◽  
pp. 65-68
Author(s):  
Rahman Farhan Aditya

Oil Palm growths in Indonesia are getting higher every year. Oil palm plantationproduced various waste, including oil palm empty fruit bunches (OP-EFB). 95 % Indonesia energy demand still provided by the fossil fuel and only 5 % provided by renewable energy, which provide opportunity of OP-EFB biomass pellets to be utilized as alternative resource. The research of biomass still low, especially research of OP-EFB biomass pellets. Therefore, the research objectives were to determine the production process of OP-EFB and to define the most effective binder and binder ratio for the biomass pellets. This research experiments  consist of shredding, chopping, drying, grinding, and sieving as raw material pretreatment. Also, varying the binder and binder concentration of the mixture between raw materials was the part of this thesis research. The binders used in this thesis research are PVAC paste and tapioca based paste with 4 variations of concentration. The analyses of the biomass pellets characteristic are density,compressive strength, proximate analysis (moisture, ash, volatile matter, and fixed carbon), calorific value, combustion rate, and gas chromatographic & mass spectroscopy (GCMS). The result shows that OP-EFB biomass pellets are qualified to be considered as biomass pellets. The most effective OP-EFB biomass pellets is biomass pellets with 10% tapioca binder concentration.


Author(s):  
V. S. Boltovsky

Plant raw materials are practically an inexhaustible natural resource, since they are constantly renewed in the process of plant photosynthesis, which determines the prospects for their use for industrial processing in various ways, including hydrolytic. The main biopolymer components of plant biomass in terms of their quantitative content are polysaccharides, the hydrolytic processing of which by acidic or enzymatic hydrolysis leads to the formation of monosaccharides and various products obtained from them. This review of scientific literature analyzes theoretical concepts and the current state of research on the development, improvement and prospects for the use of enzymatic hydrolysis of plant raw materials. The efficiency of this process and the composition of the resulting products largely depend on the features of the supramolecular structure of cellulose, the content of hemicelluloses and lignin in the raw material, the balance and activity of the cellulase complex of enzymes. It is shown that the main directions of development and improvement of the processes of enzymatic hydrolysis of plant raw materials at present are the production and use of more effective strains of microorganisms that produce highly active enzymes, the directed creation of complex enzymes (hydrolyzing not only cellulose, but also hemicellulose, as well as destroying lignin), the development of methods for pretreatment of raw materials to increase the reactivity of cellulose and remove lignin and improve the processes of fermentolysis.


2021 ◽  
Author(s):  
Dimbeswar Das ◽  
Hemen Deka

Abstract Vermicomposting potential of waste biomass of potato crop that are generated at the time of harvesting was studied employing Eisenia fetida. The experiment was carried out in pots taking two treatments; in one only potato plant biomass (PPB) was taken as raw materials whereas in the other a mixture of PPB with cow dung was engaged in the proportion of 5:1. The vermicomposted materials showed a reduction in C/N ratio, humification index, enhancement in nutrients profiles, ash contents, nitrogen-fixing, phosphate and potassium solubilizing bacterial population. The macronutrient enhancement in the vermicompost samples was recorded 3.8-4.4 fold for total N, 5-5.6 fold in available P, 1.6 fold in total K, 5.2-6.2 fold in total Ca and 1.6 fold in total Mg contents. The reduction in C/N was found in the rage of 92.5-94.4% in the vermicompost samples. The scanning electron microscope (SEM) images showed higher disintegration in the vermicompost products when compared with initial raw material and compost samples. Addition of cow dung significantly enhanced the quality and quantity of vermicompost final products besides positively affecting the earthworm population and biomass by the end of 60 days of experimental trials.


Sign in / Sign up

Export Citation Format

Share Document