Lowbush Blueberry Response to Different Phosphorus/Nitrogen Ratios

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 529d-529
Author(s):  
J.M. Smagula ◽  
W. Litten ◽  
S. Dunham

Lowbush blueberries (Vaccinium angustifolium Ait.) in three commercial fields were treated with 67.2 kg P/ha from triple super phosphate (TSP), monoammonium phosphate (MAP), or diammonium phosphate (DAP) and compared to a control in a randomized complete-block design with 12 blocks. Correction of P deficiency by fertilizers with different ratios of P to N was assessed by leaf nutrient concentrations. Samples of stems collected in July from three 0.03-m2 quadrats per treatment plot indicated MAP and DAP had no effect on dry weight of stem tissue, but increased average dry weight of leaf tissue. P and N Leaf concentrations were raised to higher levels by MAP and DAP than by TSP. TSP had no effect on leaf N concentrations but raised leaf P concentrations compared to controls. Stem length, flower buds per stem and flower bud density were increased by both MAP and DAP, but not TSP. MAP and DAP increased fruit yield by about 340 kg/ha compared to the control.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 537D-537
Author(s):  
J.M. Smagula ◽  
S. Dunham

Lowbush blueberries (Vaccinium angustifolium Ait.) in three commercial fields were treated with 67.2 kg P/ha from triple super phosphate(TSP), monoammonium phosphate (MAP), or diammonium phosphate (DAP), and compared to a control in a randomized complete block design with 12 blocks. Correction of P deficiency by fertilizers with different ratios of P to N was assessed by leaf and stem nutrient concentrations and contents (concentration × weight). Samples of stems collected in July from three 0.03 m2 quadrates per treatment plot indicated MAP and DAP had no effect on dry weight of stem tissue, but increased average dry weight of leaf tissue. Leaf nutrient concentrations and contents showed similar results; P and N were raised to higher levels by MAP and DAP than by TSP. TSP had no effect on leaf N concentration or content but raised leaf P concentration but not content, compared to controls.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 784C-784
Author(s):  
John M. Smagula ◽  
Scott Dunham

Flail mowing was compared to traditional pruning by oil fire over a 12-year period in two fertility experiments testing interactions with pruning method. In study one (1983–1986), urea at 0, 22.4, 44.8, 67.2, or 89.6 kg·ha–1 was applied preemergent in a split-block design with fertility as the main effect, and pruning method split within six blocks. Study two (1987–1994) continued the pruning and application of fertilizer on the treatment plots with similar rates, but diammonium phosphate (DAP) replaced urea as the fertilizer. Leaf tissue N concentrations were above the 1.6% standard and urea had no effect or decreased yield. There was no interaction of fertility and pruning and no effect of pruning method on yield. No interaction of fertility and pruning was found in study two, but DAP increased leaf P concentrations and yield and, after three cycles of mowing, yields had begun to decline in mowed plots compared to burned plots. No meaningful differences in leaf nutrient concentrations were found between plants in mowed and burned plots.


HortScience ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 827D-828
Author(s):  
J.M. Smagula ◽  
W. Litten ◽  
S. Dunham

In the acid podzol soils of Maine where most lowbush blueberries are grown, low availability of boron tends to keep foliar B concentration below the 24 ppm standard. To compare efficacy of soil and foliar boron application methods, 1.5 × 7.6-m treatment plots in a commer-cial lowbush blueberry field received soil-applied borate at 0, 1.1, 2.2, or 3.3 kg·ha-1 B with or without additional DAP (89 kg·ha-1 P) and ZnSO4 (3.3 kg·ha-1 Zn) or foliar-applied Solubor at 0, 0.24, 0.49, or 0.74 kg·ha-1 B with or without the additional DAP and Zn. These 16 treatments were replicated eight times in a randomized complete-block design. Leaf B concentrations were raised by all soil-applied borate treatments and by the 0.49 and 0.74 kg·ha-1 B foliar Solubor treatments, compared to the controls. When borate at 2.2 or 3.3 kg·ha-1 B was combined with DAP plus Zn a lower leaf B concentration was observed compared to B alone, possibly due to a dilution effect caused by an increase in DAP-induced growth. Leaf P deficiency (<0.125% P) was corrected when DAP and Zn were included in the fertilizer treatment. The greatest potential yield (flower buds/stem and flower bud density) was measured in treatment plots receiving a combination of DAP plus Zn and either borate at 2.2 kg·ha-1 B or Solubor at 0.74 kg·ha-1 B. With no additional treatments applied in 1999, leaf B concentrations were slightly higher in soil-treated and foliar-treated plots than in controls suggesting a small carryover from 1997-applied boron. Carryover may vary with rainfall.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 504E-504
Author(s):  
John M. Smagula ◽  
Walter Litten ◽  
Scott Dunham

In three commercial fields with a history of low leaf P concentrations, triple super phosphate (TSP) (1 P: 0 N), monoammonium phosphate (MAP) (2.1 P: 1 N), and diammonium phosphate (DAP) (1.11 P: 1 N) with P at 67.2 kg·ha-1 were compared to a control in a randomized complete-block design with 12 blocks. In 1995, all fertilizer treatments were comparable in raising soil P concentrations, but MAP and DAP resulted in higher P leaf concentrations compared to the control. DAP was more effective than MAP in raising N leaf concentrations. Leaf concentrations of Mg, B, and Cu were lowered by MAP and DAP but not TSP. Stem density, stem length, flower buds per stem, flower bud density, and yield were raised by DAP. The same treatments were applied in May 1997 and in May 1999 to the same plots in the same fields. In 1997, by the time of tip dieback in the prune year of that cycle, foliar concentration of P and N averaged higher than in the previous cycle, but still were not up to the standard for N. Fruit yield for the second cycle averaged substantially higher for the controls and for all three treatments, most dramatically for the DAP. In 1999, with only two fields available, response to treatments depended on soil N availability. At the field where leaf N was lower in control plots, MAP and DAP were more effective than TSP in raising leaf P.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 496B-496
Author(s):  
J.M. Smagula ◽  
W. Litten ◽  
S. Dunham

Lowbush blueberries (Vaccinium angustifolium Ait.) in two commercial fields were treated with a preemergent soil application of ZnSO4 at 0.34 g Zn/m2 or a prune-year or crop-year foliar application of Zintrac (1.76 g Zn/L) in a RCB design with five treatments and nine blocks, using 1.5 x 15-m treatment plots. Prune-year foliar Zintrac treatments were applied 20 June and 30 June at 53.8 mL·m-2 or 20 June at 107.6 mL·m-2. A crop-year application of Zintrac at 53.8 mL·m-2 was made on 26 June at only one location. Composite leaf tissue samples taken 14 July of the prune year indicated that two applications of Zintrac at 53.8 mL·m-2 raised Zn concentrations at both locations more than a single application at twice the rate. Soil application of ZnSO4 did not raise leaf Zn concentrations compared to the control at either location. Crop-year leaf samples taken 6 July at the site that received the crop-year foliar treatment indicated no carryover effect of prune-year Zn treatments on leaf Zn concentration, but crop-year foliar application of Zn from Zintrac did raise leaf Zn concentrations compared to the controls. The characteristics of stems sampled in the fall of the prune year at each location (stem density, stem length, flower bud formation) were not meaningfully affected by any of the prune-year treatments. Blueberry yield was not affected by any of the treatments at either location. These data suggest that control plot leaf Zn concentrations of about 15 ppm in both fields were adequate. Raising the leaf Zn concentrations to about 80 ppm with two applications of Zintrac at 53.8 mL·m -2 had no effect on growth or yield.


HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 187d-187
Author(s):  
John M. Smagula ◽  
Scott Dunham

A commercial lowbush blueberry (Vaccinium angustifolium Ait.) field deficient in leaf N and P was used to compare organic and inorganic fertilizers. In a RCB design with eight replications of 12 treatments, experimental plots received 33.6 or 67.2 kg·ha-1 rates of N (urea), P (23% phosphoric acid), N + P (DAP), N + P + K (5-10-5), or N + P + K (fish hydrolysate, 242). Fertilizer containing N alone was as effective in raising N leaf concentrations as those containing N and P. However, leaf P concentrations were raised more by fertilizer providing N and P than only P. Fish hydrolysate fertilizer was as effective as 5-10-5 in raising leaf N, P, and K concentrations in prune and crop year leaf samples. At the 67.2 kg·ha-1 rate, fish hydrolysate, N, NP and NPK increased stem length, N and NP increased flower bud density and fish hydrolysate, N and NPK increased yield compared to the control.


2020 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
NI KADEK ARYANI ◽  
I NYOMAN RAI ◽  
NI NYOMAN ARI MAYADEWI

Response of Salak Seedlings (Salacca Zallaca) Growth to Dosage of Endomycorrhizal Spore in Quartz Sand and Zeolite Carrier Media. This study aimed to study the effect of endomycorrhizal spore dosage and carrier media that were applied directly to the roots of salak plants. The research designed as factorisl by using Randomized Block Design with 2 treatment factors. The first factor was number of endomycorrhiza spores consists of 4 levels i.e 0, 75, 150, and 225 spores per 500 g carrier media per polybag, while the second factor was the type of carrier media consist of 2 levels i.e zeolite and quartz sand. The results showed that interaction between endomycorrhizal spore dosage with   carrier   media   did   not   significantly   influence   the   growth   of   salak   seedlings. Endomycorrhizal spores in doses of 75, 150 and 225 spores per polybag increased root infection and leaf P nutrient content compared to control, but seed height, leaf area, shoot dry weight, root dry weight and total dry weight of seedlings not significantly difference. The zeolite carrier media caused root infection by mycorrhizal was higher than quartz sand media, but the P nutrient uptake and seedling growth were not significantly different. Based on the results of this study it is necessary to make a longer observation of the effect of endomycorrhizal spore doses and carrier media on the growth of salak seedlings.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1085D-1085
Author(s):  
Ka Yeon Jeong ◽  
Claudio Pasian ◽  
David Tay

There is limited information on optimal substrate EC level for begonia species (noncultivated hybrids). The objective of this study was to evaluate the response of six species to different substrate EC in a greenhouse. Begonia albopicta, B. cucullata var. cucullata, B. echinosepala var. elongatifolia, B. holtonis, B. fuchsioides (red) and B. fuchsioides (pink) plants were propagated by stem cuttings, and transplanted into plastic pots using a soilless mix. Five concentrations (20, 80, 200, 400, and 600 mg·L-1 N) of 17–5–17 fertilizer were applied as irrigation water to derive the five substrate EC levels. This experiment was a factorial randomized complete-block design. Substrate EC was measured weekly using the PourThru method and averaged for each treatment of each species. Inflorescence number, the longest stem length, SPAD readings, leaf area, and dry weight of each plant were measured as growth parameters. There were significant responses to substrate EC level and species on begonia growth parameters. The highest growth parameters of B. albopicta and B. cucullata were obtained at EC 5.7 and 6.6 mS·cm-1, respectively. The maximum growth of B. echinosepala and B. holtonis was observed at 2.6 and 3.0 mS·cm-1, respectively. B. fuchsioides, grown at 1.2 mS·cm-1, had the best growth parameter values. As EC level increased, SPAD value for B. fuchsioides (pink) and B. holtonis also increased. The highest SPAD reading was observed at EC 3.7 mS·cm-1 for B. albopicta, EC 6.6 mS·cm-1 for B. cucullata, EC 2.6 mS·cm-1 for B. echinosepala, and EC 4.1 mS·cm-1 for B. fuchsioides (red). Plant mortality of several begonia species was observed when grown at EC value above 6.4 or below 4.4 mS·cm-1.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1107B-1107
Author(s):  
John M. Smagula ◽  
Ilse W. Fastook

Two experiments evaluated the Trevett (1972) Cu standard of 7 ppm by raising leaf Cu concentrations in a commercial blueberry field having low (∼4 ppm) leaf Cu concentrations. A foliar spray of Cu Keylate (5% Cu) (Stoller Enterprises, Inc.) in a volume of 627 L·ha-1 applied 0, 0.56 1.12, 1.68, or 2.24 kg·ha-1 of Cu. Ammonium sulfate at 3.1 kg·ha-1 was added to the solutions to enhance Cu absorption. A preemergent soil application of Micromate Calcium Fortified Mix (Stoller Enterprises, Inc.), a micronutrient mixture containing Cu (0.3%), was also tested at 14 kg·ha-1. These 6 treatments were replicated 7 times in a randomized complete-block design in 2001. Treatments were reapplied in 2003 in a split-plot design with Cu treatments as the main plots and an application of DAP at 448 kg·ha-1 as the split plots. In 2001, leaf Cu concentrations increased linearly, up to 12 ppm, with increasing rates of Cu, but Micromate had no effect. Leaf N and P concentrations were below the standards of 1.6% and 0.125%, respectively, and could explain why raising leaf Cu concentrations had no effect on growth or yield. In 2003, DAP corrected the N and P deficiency and leaf Cu concentrations were raised to above the 7 ppm standard with 2.24 kg·ha-1 of Cu, but again, no effect on growth or yield was found. The Cu standard appears to be too high.


HortScience ◽  
2011 ◽  
Vol 46 (5) ◽  
pp. 799-807 ◽  
Author(s):  
Gladis M. Zinati ◽  
John Dighton ◽  
Arend-Jan Both

We tested the effects of using an inoculum containing natural ericoid roots and soil (NERS) with two fertilizer and irrigation rates on plant growth, shoot (stems and leaves) nutrient concentration, leachate quality, and mycorrhizal colonization of container-grown Coast Leucothoe [Leucothoe axillaris (Lam.) D. Don] and Japanese Pieris [Pieris japonica (Thunb.) D. Don ex G. Don]. Uniform rooted liners were grown in 10.8-L containers in a pine bark, peatmoss, and sand (8:1:1 by volume) substrate medium in a randomized complete block design with four replications. A controlled-release fertilizer, Polyon® Plus 14-16-8 (14N–7P–6.6K), was incorporated in the substrate medium at the 100% manufacturer's recommended fertilizer rate [representing high fertilizer rate (HF)] (56 g per container) to supply 7.84 g nitrogen (N) and at 50% the manufacturer's recommended rate [representing low fertilizer rate (LF)]. Plants were irrigated using a cyclic drip irrigation system at high (HI) and low (LI) irrigation rates calibrated to supply 25.2 L of water and 16.8 L per week, respectively. On average, NERS inoculation increased shoot growth of Leucothoe and Pieris by 56% and 60%, respectively. Shoots of Leucothoe inoculated with NERS had higher N, phosphorus (P), magnesium (Mg), and manganese (Mn) concentrations than non-inoculated plants. At LF, nitrous-N (NOx-N) and orthophosphorus (PO4-P) concentrations in the leachate were reduced by 53% from Leucothoe and 62% from Pieris compared with HF-treated plants. A reduction of 37% and 36% in PO4-P concentration in leachates from Leucothoe and Pieris, respectively, were achieved at the reduced irrigation (LI) rate. The NERS inoculation reduced PO4-P concentrations in leachate from Leucothoe by 26% and NOx-N concentration by 33% in leachates from Pieris compared with non-inoculated plants. Compared with plants grown in the HI–HF treatment, the combination of LI–LF treatment reduced NOx-N concentrations in leachates from Leucothoe by 60% (P = 0.016) and reduced PO4-P leachate concentrations from Pieris by 72% (P = 0.0096). Decreasing the fertilizer rate to 50% of the recommended rate and the irrigation rate to 67% of the recommended rate in conjunction with the incorporation of NERS reduced leachate nutrient concentrations of two main water pollutants (NOx-N and PO4-P). Adopting the practice of adding NERS containing fungi and bacteria can be an effective system to increase shoot dry weight, allow reduction in fertilizer application, conserve water for irrigation, and minimize subsequent nutrient runoff in nursery operations.


Sign in / Sign up

Export Citation Format

Share Document