scholarly journals 287 Exclusion of End-of-day Far-red Light by Photoselective Plastic Films Reduces Height of Cucumber Seedlings

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 441A-441
Author(s):  
Shumin Li ◽  
Nihal C. Rajapakse ◽  
Ryu Oi

The far-red light intercepting photoselective plastic greenhouse covers have been shown to be effective in producing compact vegetable transplants. However, photoselective films reduce the photosynthetic photon flux (PPF) transmission compared to conventional plastic films because of the dye contained in the film. The low PPF in greenhouses covered with photoselective films may result in decreased plant dry matter production and could especially be a problem in the season with low light level and in northern latitudes. Therefore, this study was conducted to determine if covering at the end of the day (EOD) with photoselective films was effective in controlling height of vegetable seedlings. This will allow growers to maintain a high light level during daytime for optimum growth of plants. Cucumber seedlings were exposed to light transmitted through a photoselective film and a clear control film. Three exposure durations: continuous, exposure to filtered light from 3:00 pm to 9:00 am, and from 5:00 pm - 9:00 am, were evaluated. Results show that, after 15 days of treatment, about 25% of height reduction could be achieved by exposing the plants at the EOD from 3:00 pm to 9:00 am or from 5:00 pm to 9:00 am. Plants grown continuously under filtered light were the shortest. Compared to plants grown in photoselective chamber continuously, EOD exposed plants had greater leaf, stem and shoot dry weights, greater leaf area and thicker stem. Specific leaf and stem dry weights were also greater in EOD exposed plants. Number of leaves was not significantly affected by any exposure periods tested. The results suggested that the EOD use of photoselective film is effective in reducing height of cucumber seedlings. The responses of other crops need to be evaluated to test the feasibility of using photoselective film as a EOD cover on wide range of crops.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 533A-533 ◽  
Author(s):  
Shumin Li ◽  
Nihal C. Rajapakse ◽  
Ryu Oi

Growth chamber experiments were conducted to investigate the effectiveness of several photoselective plastic films in controlling height of `Sweet Success' cucumber, `Mt. Pride' tomato, and `Capistrano' bell pepper transplants. Four types of treatment films; a control, two far-red light intercepting films (YXE-1 and YXE-10), and a red light intercepting film (SXE-1), with R: FR ratios of 1.0, 2.0, 1.6, and 0.8, respectively, were used as the covering materials of experimental chambers. Photosynthetic photon flux (PPF) was adjusted to be the same in all chambers with cheese cloth. Treatment period for cucumber and tomato was 15 days and that for bell pepper was 20 days. At the end of the treatment, significantly shorter plants were found in both YXE-1 and YXE-10 chambers for all the three tested crops. However, YXE-10 was more effective than YXE-1 in producing compact cucumber, tomato and bell pepper transplants. SXE-4 film produced taller plants than control film. Magnitude of response to filtered light varied with the crop species. Number of leaves was not significantly affected by the light transmitted through photoselective filters, indicating that the height reduction was mainly caused by the reduction in internode length. With the commercial development of photoselective greenhouse covers or shade material in the near future, nursery and greenhouse industry could potentially reduce the cost for growth regulating chemicals, reduce the health risks to their workers and consumers, and reduce environmental pollution.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 436E-436
Author(s):  
Teresa A. Cerny ◽  
Nihal C. Rajapakse ◽  
Ryu Oi

Growth chambers constructed from photoselective plastic films were used to investigate the effects of light quality on height manipulation and flowering of photoperiodic plant species. Three types of treatment films were used; control, a far-red light intercepting film (YXE-10) and a red light intercepting film (SXE-4). The red (600-700 nm):far-red (700-800 nm) ratios and phytochrome photoequilibrium estimates for the control, YXE-10 and SXE-4 films were 1.0 and 0.71, 1.5 and 0.77, and 0.71 and 0.67, respectively. The photosynthetic photon flux was adjusted to uniformity among chambers using neutral density filters. Spectral filters did not effect minimum and maximum air temperatures. Experiments were conducted using quantitative long day (Antirrhinum majus and Petunia × hybrida), quantitative short day (Zinnia elegans and Dendranthema × grandiflorum) and day-neutral (Rosa × hydrida) plant species under natural short-day conditions. Plants produced under the YXE-10 filters were significantly shorter than the control plants, while plants produced under the SXE-4 films had similar or increased height compared to the control plants. However, both height response and flowering times varied with the crop species. Flowering time of Rosa × hybrida plants was uniform among all treatments. Flowering of quantitative long-day plants was delayed by at least 10 days under the YXE-10 film and was most responsive to the filtered light. Flowering of quantitative short-day plants was delayed by 2 days under the YXE-10. Days to flower for plants produced under the SXE-4 film were similar to the control plants for all species tested.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 522c-522
Author(s):  
Anuradha Tatineni ◽  
Sonja L. Maki ◽  
Nihal C. Rajapakse

Interest in the use of non- (or less) chemical methods to reduce the height of ornamental crops has increased tremendously. Manipulation of greenhouse light quality is one alternative for plant growth regulation. We have shown that eliminating far-red light from the greenhouse environment with liquid CuSO4 spectral filters is effective in reducing the height of a wide range of plants though plant carbohydrate status is also altered under CuSO4 filter. In previous studies, application of GA3 reversed both the reduction of plant height and carbohydrate status of CuSO4 spectral filter grown plants. It has been proposed that GAs enhance the activity of the enzyme sucrose phosphate synthase to regulate carbohydrate levels. In the present study the role of exogenously applied GA19, GA1, and GA3 in overcoming the reduction of plant height and carbohydrate levels was investigated. Chrysanthemum plants were treated weekly for 4 weeks with saturating doses of GA19, GA1 and GA3 (25 μg) or the growth retardants paclobutrazol and prohexadione. GA1 was also applied with paclobutrazol and prohexadione to assess whether response to GAs is altered under CuSO4 filter. GA1 and GA3 promoted growth similarly under control or CuSO4 filter. GA19 was least effective in promoting growth under CuSO4 filter. In summary, these results suggest that gibberellin physiology is altered under spectral filters with the conversion of GA19 a possible point of regulation. The correlation between the carbohydrate status and the growth of the plants will be discussed.


2008 ◽  
Vol 42 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Casey Moore

Over the past ten years, efforts to characterize the optical properties of Earth's natural waters have largely merged with the need to better understand underlying biological and chemical processes. Fundamental optical properties such as light level, absorption, scattering and fluorescence are now being utilized with increasing effectiveness to specify particulate and dissolved in-water components in a wide range of applications, including detection of harmful algal blooms, studying ecosystem dynamics, monitoring the effect of industrial and agricultural pollutants, and understanding carbon sequestration processes in the oceans. A diverse offering of commercial optical sensing products capable for research, routine measurements, and in some cases, operational monitoring are now available. These technologies have provided the scientific community with a set of tools for developing, testing, and placing into practice analytical and semi-analytical methods to infer specific biogeochemical parameters and processes. As a result, new, more specialized sensors are now emerging. New sensors couple basic optical property measurements with processing algorithms to provide specific indicators for Harmful Algal Bloom (HAB) identification, carbon products, nutrients, and particle size distributions. The basic measurement methods are described and examples of devices incorporating them are provided to illustrate their use in modern oceanographic research and monitoring.


1998 ◽  
Vol 116 (4) ◽  
pp. 1505-1513 ◽  
Author(s):  
James R. Shinkle ◽  
Rajan Kadakia ◽  
Alan M. Jones

2021 ◽  
Vol 27 (4) ◽  
pp. 279-289
Author(s):  
Elahe Sayyadi ◽  
Asghar Mesbahi ◽  
Reza Eghdam Zamiri ◽  
Farshad Seyyed Nejad

Abstract Introduction: The present study aimed to investigate the radiation protection properties of silicon-based composites doped with nano-sized Bi2O3, PbO, Sm2O3, Gd2O3, WO3, and IrO2 particles. Radiation shielding properties of Sm2O3 and IrO2 nanoparticles were investigated for the first time in the current study. Material and methods: The MCNPX (2.7.0) Monte Carlo code was utilized to calculate the linear attenuation coefficients of single and multi-nano structured composites over the X-ray energy range of 10–140 keV. Homogenous distribution of spherical nanoparticles with a diameter of 100 nm in a silicon rubber matrix was simulated. The narrow beam geometry was used to calculate the photon flux after attenuation by designed nanocomposites. Results: Based on results obtained for single nanoparticle composites, three combinations of different nano-sized fillers Sm2O3+WO3+Bi2O3, Gd2O3+WO3+Bi2O3, and Sm2O3+WO3+PbO were selected, and their shielding properties were estimated. In the energy range of 20-60 keV Sm2O3 and Gd2O3 nanoparticles, in 70-100 keV energy range WO3 and for photons energy higher than 90 keV, PbO and Bi2O3 nanoparticles showed higher attenuation. Despite its higher density, IrO2 had lower attenuation compared to other nanocomposites. The results showed that the nanocomposite containing Sm2O3, WO3, and Bi2O3 nanoparticles provided better shielding among the studied samples. Conclusions: All studied multi-nanoparticle nanocomposites provided optimum shielding properties and almost 8% higher attenuation relative to single nano-based composites over a wide range of photon energy used in diagnostic radiology. Application of these new composites is recommended in radiation protection. Further experimental studies are suggested to validate our findings.


2000 ◽  
Vol 125 (2) ◽  
pp. 235-241 ◽  
Author(s):  
O. Ayari ◽  
M. Dorais ◽  
A. Gosselin

Daily and seasonal variations of photosynthetic activity, chlorophyll a (Chl-a) fluorescence and foliar carbohydrate content were studied in situ on greenhouse tomato (Lycopersicon esculentum Mill. `Trust') plants grown under CO2 enrichment and supplemental lighting. The objective of this study was to assess the effect of seasonal variation of the photosynthetic photon flux (PPF) on photosynthetic efficiency of tomato plants and to determine the presence or absence of photosynthetic down-regulation under greenhouse growing conditions prevailing in northern latitudes. During winter, the fifth and the tenth leaves of tomato plants showed low, constant daily photosynthetic activity suggesting a source limitation under low PPF. In winter, the ratio of variable to maximum Chl-a fluorescence in dark adapted state (Fv/Fm) remained constant during the day indicating no photoinhibition occurred. In February, an increase in photosynthetic activity was followed by a decline during March, April, and May accompanied by an increase in sucrose and daily starch concentrations and constant but high hexose level. This accumulation was a long-term response to high PPF and CO2 enrichment which would be caused by a sink limitation. Thus, in spring we observed an in situ downregulation of photosynthesis. The ratio Fv/Fm decreased in spring compared to winter in response to increasing PPF. The daily decline of Fv/Fm was observed particularly as a midday depression followed by a recovery towards the end of the day. This indicated that tomato leaves were subject to a reversible inhibition in spring. Fv/Fm was lower in March than in April and May even though PPF was higher in April and May than in March. These results suggest that tomato plants develop an adaptive and protective strategy as PPF increases in spring.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Liu ◽  
Marc W. van Iersel

Red and blue light are traditionally believed to have a higher quantum yield of CO2 assimilation (QY, moles of CO2 assimilated per mole of photons) than green light, because green light is absorbed less efficiently. However, because of its lower absorptance, green light can penetrate deeper and excite chlorophyll deeper in leaves. We hypothesized that, at high photosynthetic photon flux density (PPFD), green light may achieve higher QY and net CO2 assimilation rate (An) than red or blue light, because of its more uniform absorption throughtout leaves. To test the interactive effects of PPFD and light spectrum on photosynthesis, we measured leaf An of “Green Tower” lettuce (Lactuca sativa) under red, blue, and green light, and combinations of those at PPFDs from 30 to 1,300 μmol⋅m–2⋅s–1. The electron transport rates (J) and the maximum Rubisco carboxylation rate (Vc,max) at low (200 μmol⋅m–2⋅s–1) and high PPFD (1,000 μmol⋅m–2⋅s–1) were estimated from photosynthetic CO2 response curves. Both QYm,inc (maximum QY on incident PPFD basis) and J at low PPFD were higher under red light than under blue and green light. Factoring in light absorption, QYm,abs (the maximum QY on absorbed PPFD basis) under green and red light were both higher than under blue light, indicating that the low QYm,inc under green light was due to lower absorptance, while absorbed blue photons were used inherently least efficiently. At high PPFD, the QYinc [gross CO2 assimilation (Ag)/incident PPFD] and J under red and green light were similar, and higher than under blue light, confirming our hypothesis. Vc,max may not limit photosynthesis at a PPFD of 200 μmol m–2 s–1 and was largely unaffected by light spectrum at 1,000 μmol⋅m–2⋅s–1. Ag and J under different spectra were positively correlated, suggesting that the interactive effect between light spectrum and PPFD on photosynthesis was due to effects on J. No interaction between the three colors of light was detected. In summary, at low PPFD, green light had the lowest photosynthetic efficiency because of its low absorptance. Contrary, at high PPFD, QYinc under green light was among the highest, likely resulting from more uniform distribution of green light in leaves.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1996
Author(s):  
Yali Li ◽  
Jie Xiao ◽  
Jiangtao Hu ◽  
Byoung Ryong Jeong

The optimal photoperiod and light quality for runner induction in strawberries ‘Sulhyang’ and ‘Maehyang’ were investigated. Two experiments were carried out in a semi-closed walk-in growth chamber with 25/15 °C day/night temperatures and a light intensity of 250 μmol·m–2·s–1photosynthetic photon flux density (PPFD) provided from white light-emitting diodes (LEDs). In the first experiment, plants were treated with a photoperiod of either 12, 14, 16, 18, 20, or 22 h In the second experiment, a total of 4 h of night interruption (NI) light at an intensity of 70 μmol·m–2·s–1PPFD provided from either red, blue, green, white, or far-red LED in addition to 11 h short day (SD). The results showed that both ‘Sulhyang’ and ‘Maehyang’ produced runners when a photoperiod was longer than 16 h, and the number of runners induced positively correlated with the length of photoperiod. However, the plant growth, contents of chlorophyll, sugar and starch, and Fv/Fo decreased in a 22 h photoperiod. All qualities of the NI light, especially red light, significantly increased the number of runners and daughter plants induced per plant as compared with those in the SD treatment in both cultivars. In a conclusion, a photoperiod between 16 and 20 h and NI light, especially red NI light, can be used for quality runner induction in both ‘Sulhyang’ and ‘Maehyang’.


2021 ◽  
Vol 850 (1) ◽  
pp. 012013
Author(s):  
Subhasish Das ◽  
Anubrata Mondal ◽  
Kamalika Ghosh

Abstract The lighting design in a residential building now-a-days is not only limited to general lighting but also it is focused to provide quality lighting with the help of wide range of available luminaire with different orientations as well as colours with efficient use of energy, that opens up accurate characteristics of specific areas in any room of the building. The affordable housings in many states are some of the examples of residential building where most of the flats in a typical floor are using conventional lighting systems which are not energy efficient and light level is low compared to standards. This paper is mainly focused to provide a budget friendly as well as energy efficient lighting design with the help of new and energy efficient lamps using DIALux Software, which can be proposed to renovate the existing conventional lighting systems. In this paper effort has been made to reduce the power consumption in all rooms and lux levels has been achieved as per standard values along with good amount of energy saving with the use of newer technologies.


Sign in / Sign up

Export Citation Format

Share Document