scholarly journals Harvest Date Effects on Maturity, Quality, and Storage Disorders of `Honeycrisp' Apples

HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 164-169 ◽  
Author(s):  
Christopher B. Watkins ◽  
Mustafa Erkan ◽  
Jacqueline F. Nock ◽  
Kevin A. Iungerman ◽  
Randolph M. Beaudry ◽  
...  

`Honeycrisp' is a new apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] cultivar that has been planted extensively in North America, but the storage disorders soggy breakdown and soft scald have resulted in major fruit losses. The effects of harvest date and storage temperature on fruit quality and susceptibility of fruit to these disorders have been investigated in Michigan, New York, and Maine. Internal ethylene concentrations were variable over a wide range of harvest dates, and a rapid increase in autocatalytic ethylene production was not always apparent. The starch pattern index, soluble solids content, titratable acidity and firmness also appear to have limited use as harvest indices. Development of soggy breakdown and soft scald is associated with later harvest dates and storage of fruit at temperatures of 0 to 0.5 °C compared with higher storage temperatures. It is recommended that `Honeycrisp' be stored at 3 °C, although storage disorders still can occur at this temperature if fruit are harvested late. In addition, greasiness development may be worse at higher storage temperatures.

1972 ◽  
Vol 52 (4) ◽  
pp. 483-491 ◽  
Author(s):  
B. J. E. TESKEY ◽  
K. L. PRIEST ◽  
E. C. LOUGHEED

McIntosh apples that had been sprayed at the end of July with Alar as recommended commercially for preharvest drop control, were later treated with ethephon at 400 and 800 mg/liter, 6 and 3 days before optimum harvest date. Results were compared with untreated fruit and with fruit from trees sprayed with Alar alone. Measurements were made of abscission and firmness as well as CO2 and ethylene (C2H4) evolution. Treated fruit had a respiration rate greater than that of the control at harvest time. Ethephon treatments resulted in fruit that was firmer than Alar-treated or control fruit. No differences were noted among treatments with regard to pH, total acidity, percent soluble solids, or storage disorders of the fruit.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3430
Author(s):  
Thi Minh Phuong Ngo ◽  
Thanh Hoi Nguyen ◽  
Thi Mong Quyen Dang ◽  
Thi Van Thanh Do ◽  
Alissara Reungsang ◽  
...  

The aim of extending shelf-life and maintaining quality is one of the major issues regarding mango fruit preservation. The quality of mango fruits is greatly affected by postharvest factors, especially temperature and fruit treatment. In this study, the effect of coating and storage temperature on the characteristics of mango fruits was investigated. The mango fruits were immersed in different concentrations (1.5%, 2.0%, and 2.5%) of pectin/nanochitosan dispersion (with ratios of pectin:nanochitosan 50:50), and (0.75%, 1% and 1.25%) of nanochitosan dispersion and stored at 17, 25, and 32 °C for 24 days. Changes in fruit, including weight loss, firmness, color, chemical composition (such as the total soluble solids concentration (TSS)), total sugar, reducing sugar, titratable acidity (TA), and vitamin C were periodically recorded. The results indicated that the pectin/nanochitosan coating significantly prevented reductions in the fruit weight, firmness, TSS, TA, and vitamin C content. Additionally, pectin/nanochitosan at a low temperature (17 °C) had a greater positive effect on fruit shelf-life and weight maintenance than 25 and 32 °C. The coated mango fruits maintained good quality for 24 days at 17 °C, while coated fruits stored at 25 °C and 32 °C, as well as uncoated ones stored at 17 °C, were destroyed after two weeks. At the maximum storage time evaluated, the coating formulations containing pectin and nanochitosan exhibited microbial counts below the storage life limit of 106 CFU/g of fruit. In general, the results showed that the pectin/nanochitosan coating (2%) with a storage temperature of 17 °C is the most effective strategy for improving quality and extending the shelf-life of mango fruits.


Discover Food ◽  
2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Pankaj B. Pathare ◽  
Mai Al-Dairi

AbstractFresh fruits like bananas are very susceptible to mechanical damage during postharvest handling which can result in a substantial decline in quality. The study aims to evaluate the effect of bruise damage and storage temperatures on the quality of banana fruits after 48 h storage. Each ‘Grand Naine’ banana fruit was impacted once by using a drop impact test using three different heights (10, 30, and 50 cm) and storage temperatures (13 and 22 °C) after 48 h of storage. Different quality analyses were measured like bruise measurements (impact energy, bruise area, bruise volume, and bruise susceptibility), weight loss, total soluble solids (TSS), color (L*, a*, b*, hue°, chroma, yellowness index, yellowness value) headspace gases (respiration and ethylene production rate). The results showed that bruise measurements (bruise area, bruise volume, and bruise susceptibility) were highly affected by drop height. The quality parameters like weight, color, total soluble solids and headspace gases were affected by drop height and storage condition. Weight loss, total soluble solids, respiration rate, and ethylene production rate increased as drop height and storage temperature rise. Storage at ambient conditions (22 °C) accelerated bruising occurrence in banana fruits. Fewer changes were observed after 48 h of storage. The least value of yellowness index was observed on the non-bruised banana fruits (84.03) under 13 °C storage conditions. The findings of the study can provide baseline data to understand the mechanical damage mechanism on fruit quality, hoping to create awareness and educate farming communities and consumers. Storage temperature management is another approach that needs to be followed to reduce the occurrence of mechanical damage in fresh produce.


Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 19 ◽  
Author(s):  
Nasiru Alhassan ◽  
John B. Golding ◽  
Ron B. H. Wills ◽  
Michael C. Bowyer ◽  
Penta Pristijono

Calyx browning and internal quality loss are major physiological causes for the loss of quality in citrus fruit during storage. While the symptoms of calyx senescence are only superficial, it can affect the appearance and consumer acceptability of citrus fruit. In this study, continuous ethylene exposure at different storage temperatures was investigated to assess their effect on calyx senescence and internal qualities in ‘Afourer’ mandarin and Navel orange fruit during storage. ‘Afourer’ mandarin fruit were stored at ≤0.001 (equivalent to ethylene-free air), 0.01, 0.1 and 1 µL L−1 of ethylene at either 5, 10 or 20 °C, whilst in a parallel experiment, Navel oranges were exposed to ≤0.001, 0.1 and 1 µL L−1 ethylene at either 1 or 10 °C. Changes in external and internal postharvest quality parameters were assessed for up to 8 weeks for ‘Afourer’ mandarins and 10 weeks for Navel oranges. At all storage temperatures, high levels of ethylene were found to increase the level of calyx senescence, weight loss, loss of fruit firmness and respiration rates. Also, there were significant effects of ethylene and storage temperatures on total soluble solids (TSS) content, titratable acidity (TA), and ethanol accumulation in both citrus species. Continuous exposure to high ethylene also significantly reduced vitamin C and ferric reducing antioxidant power (FRAP) in ‘Afourer’ mandarins after 8 weeks of storage. Overall, ethylene treatments had a significant effect on both the external and internal qualities of the fruit during storage. The relationship between ethylene concentrations and storage temperatures demonstrate that lowering atmospheric ethylene levels at reduced storage temperatures maintain fruit quality during long term storage.


2004 ◽  
Vol 26 (1) ◽  
pp. 168-170 ◽  
Author(s):  
Maria Inês Sucupira Maciel ◽  
Vera Lúcia Arroxelas Galvão de Lima ◽  
Eufrásio Souza dos Santos ◽  
Marilene da Silva Lima

The objective of this work was to compare the effects of four different concentrations of cassava starch film and storage temperature on shelf life and the quality of a genotype of acerola from the Germplasm Active Bank (GAB) of Federal Rural University of Pernambuco, Brazil. Sound orange-reddish acerola fruits were washed with a chlorine solution (100 mg.L-1 active chlorine) and randomly distributed into different lots. The fruits were dipped for 3 min in a cassava starch suspension with concentrations of 1, 2, 3 and 4% (w/v) and the control without coating, stored at 10ºC (85% RH) and 22ºC (85% RH). The total soluble solids (TSS), pH, titratable acidity (TA) and ascorbic acid (AA) were determined at harvest and regular interval during storage. The use of cassava biofilm at 1% on acerola fruits maintained the highest ascorbic acid content and the temperature of 10ºC extended storage life. The fruits coated with 1 and 2% biofilm could be stored for a period up to 15 days at 10ºC, with acceptable quality characteristics.


1990 ◽  
Vol 115 (3) ◽  
pp. 435-439 ◽  
Author(s):  
Dangyang Ke ◽  
Hendrik van Gorsel ◽  
Adel A. Kader

`Bartlett' pears (Pyrus communis L.) tolerated up to 10 days of exposure to atmospheres containing 1.0%, 0.5%, or 0.25% O2 at 0, 5, or 10C without any detrimental effects on their quality attributes. The fruits also tolerated 4 to 6 days of exposure to air enriched with 20%, 50%, or 80% CO2 at the three temperatures. The beneficial effects of exposures to the O2-reduced or CO2-enriched atmospheres included reduction of respiration and ethylene production rates and retardation of skin yellowing and flesh softening. While 1.0% or 0.5% O2 and 20% CO2 did not increase ethanol and acetaldehyde contents, 0.25% O2 slightly increased and 50% or 80% CO2 dramatically increased the contents of these two volatiles in juice of the fruits. The effects of low O2 or high CO2 on the above attributes generally became more pronounced at the higher temperatures. The low O2 or high CO2 treatments did not significantly affect either soluble solids content or titratable acidity. Low O2 did not influence, but high CO2 slightly increased pH of the fruits.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 99
Author(s):  
Gethmini Kodagoda ◽  
Michael E. Netzel ◽  
Yasmina Sultanbawa ◽  
Tim O’Hare ◽  
Hung T. Hong

The Queen Garnet Plum (QGP), a cultivar of Japanese plum (Prunus salicina Lindl.), was developed as a high anthocyanin plum in a Queensland Government breeding programme. Anthocyanins have been associated with various health attributes, including diabetes control, cardiovascular disease prevention and anti-inflammatory activity. This study was aimed at identifying the changes in physiochemical properties and important phytochemicals of QGP when stored under two storage temperatures. QGP from two growers were stored at 4 and 23 oC for 0, 4, 7, 10 and 14 days. At the end of each storage period the peel, outer flesh (up to 7 mm from the peel) and inner flesh were separated and analysed for chroma, total soluble solids (TSS) and titratable acidity (TA). The grower source had a significant effect on the measured parameters when considered as a covariate. Chroma values of the peel, inner and outer flesh were significantly (P < 0.05) different at 4 and 23 oC, after 14 days. There was no significant difference in the inner flesh TSS (IF-TSS) and outer flesh TSS (OF-TSS) between the different storage temperatures, but compared to day 0, after 14 days IF-TSS and OF-TSS were significantly (P < 0.05) lower. TA of the inner and outer flesh were significantly (P < 0.05) different at the two storage temperatures, but only the inner flesh TA was significantly (P < 0.05) different after 14 days. Further analysis is in progress for anthocyanins, total phenolics, carotenoids, folates and vitamin C. The current study indicates that QGP is climacteric and grower source, storage temperature and time as well as tissue can significantly affect the studied physicochemical parameters.


2004 ◽  
Vol 14 (4) ◽  
pp. 496-499 ◽  
Author(s):  
James M. Wargo ◽  
Chris B. Watkins

`Honeycrisp' apples (Malus × domestica) were harvested over 3-week periods in 2001 and 2002. Maturity and quality indices were determined at harvest. Fruit quality was evaluated after air storage [0.0 to 2.2 °C (32 to 36 °F), 95% relative humidity] for 10-13 weeks and 15-18 weeks for the 2001 and 2002 harvests, respectively. Internal ethylene concentrations (IEC), starch indices (1-8 scale), firmness and soluble solids content (SSC) did not show consistent patterns of change over time. Starch hydrolysis was advanced on all harvest dates, but it is suggested that a starch index of 7 is a useful guide for timing harvest of fruit in western New York. After storage, firmness closely followed that observed immediately after harvest, and softening during storage was slow. No change in SSC was observed during storage in either year. Incidence of bitter pit and soft scald was generally low and was not affected consistently by harvest date. The incidence of stem punctures averaged 18.5% over both years, but was not affected by harvest date. Development of stem end cracking in both years, and rot development in one year, increased with later harvest dates. A panel of storage operators, packers, growers, and fruit extension specialists evaluated the samples for appearance and eating quality after storage, and results suggested that a 2-week harvest window is optimal for `Honeycrisp' apples that are spot picked to select the most mature fruit at each harvest.


Author(s):  
María Lorena Luna-Guevara ◽  
Teresita González-Sánchez ◽  
Adriana Delgado-Alvarado ◽  
María Elena Ramos-Cassellis ◽  
José Guillermo Pérez-Luna ◽  
...  

Objective: To study the effect of storage temperatures and dehydration conditions (solar and convective drying; SD, CD), on the quality, physicochemical parameters and antioxidant properties of tomato fruits. Methodology: The physicochemical characteristics pH, titratable acidity, soluble solids (°Bx) and color parameters (L*, a* and b*), were evaluated. The lycopene, carotenoids and antioxidant activity percentages retention of tomatoes fruits stored at 7 and 22 ° C for 5 days and subjected to SD (Temperature (T) of 67 °C and luminescence of 685 lum/sqf) and CD (T 70 °C, flow rates 0.5, 1.0 and 1.5 m/s), were analyzed. Results: The fruits reached humidities of 17 and 15% for SD and CD. The parameters pH, °Bx, L*, a*, b* were highest with 22°C and CD (1.5 m/s). The value of the carotenoids was higher in fruits stored at 7 ° C and subjected to CD (1.0 and 1.5 m/s) and SD with values of 83.85, 85.98 and 99.43%, respectively. The CD (0.5 m/s) and SD improved lycopene (94.37 and 95.14%) and the antioxidant activity with values of 73.06 and 97.21%. Implications: The application of solar dehydration depends on luminescence condition; however, it is inexpensive and environmentally friendly alternative. Conclusions: The results derived in a viable alternative for the conservation and commercialization of tomato fruits in rural communities


1990 ◽  
Vol 115 (2) ◽  
pp. 265-269 ◽  
Author(s):  
Joshua D. Klein ◽  
Susan Lurie

The benefits conferred by a prestorage heat treatment on poststorage quality of apples (Malus domestics Borkh.) were measured on `Anna', a non-storing early cultivar, and `Granny Smith', a long-storing late cultivar. The major benefit was a decrease in rate of apple softening, both during OC storage and during simulated shelf life at 20C. Soluble solids concentration was not affected by heat treatment, but titratable acidity was reduced. Ethylene production after heat treatment and storage was similar to or higher than that of control apples, but respiration was lower. The optimum temperature and time combination for prestorage treatment of both cultivars was 4 days at 38C.


Sign in / Sign up

Export Citation Format

Share Document