scholarly journals Crop Coefficient-based Deficit Irrigation and Planting Density for Onion: Growth, Yield, and Bulb Quality

HortScience ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Daniel I. Leskovar ◽  
Shinsuke Agehara ◽  
Kilsun Yoo ◽  
Nuria Pascual-Seva

Agricultural communities in the semiarid regions of the world are constantly being affected by water scarcity, increased regulations restricting water use, strong competition for irrigation water with the urban sector, and severe drought periods. Conversely, the consumer demand for high-quality and nutritious foods is increasing rapidly. A 2-year field study evaluated growth, yield, and bulb quality in response to precision planting density and deficit irrigation of onion (Allium cepa L.) in southwest Texas. Seeds of short-day sweet onion cv. Texas Grano 1015Y were planted in the field on 11 Nov. 2007 and 30 Oct. 2008 at two planting densities (PDs), 397,000 (standard) and 484,000 (high) seeds/ha. Three irrigation rates using growth stage-specific crop coefficients and subsurface drip were imposed after plants were fully established, 100%, 75%, and 50% crop evapotranspiration rates (ETc). Total rainfall plus irrigation received for each irrigation rate were 594, 501, and 413 mm in 2008 and 662, 574, and 486 mm in 2009. In both seasons, there were consistent trends in growth, yield, and quality parameters. Leaf fresh weight was unaffected by PD but was reduced by deficit irrigation at 50% ETc. Although increasing planting density reduced the average bulb size by 12%, it increased the number of marketable bulbs by 21% to 33% and marketable yield by 7% to 14%. In contrast, deficit irrigation showed a trend to reduce both the number of bulbs and bulb size with yield reductions of 8% to 13% at 75% ETc and 19% to 27% at 50% ETc. Neither planting density nor deficit irrigation rate had a significant effect on soluble solids content, pungency, or quercetin contents. These results suggest that growers of short-day onions in semiarid regions could adjust PDs to target high-value bulb sizes. Implementing water-conserving practices (deficit irrigation at 75% ETc rate) would result in a decrease of high-value bulb grades and modest losses in yield but not flavor or nutritional components.

2020 ◽  
Vol 48 (3) ◽  
pp. 1233-1247
Author(s):  
Kitti Z. HORVÁTH ◽  
Bulgan ANDRYEI ◽  
Lajos HELYES ◽  
Zoltán PÉK ◽  
András NEMÉNYI ◽  
...  

Mycorrhizal inoculations were investigated to reveal their effects on the growth and productivity of processing tomato grown under field conditions. Plants inoculated at sowing (M1), sowing + transplanting (M2) and non-inoculated plants (M0) were grown under regularly irrigated (RI), deficit irrigated (DI), and non-irrigated (I0) conditions. In dry years, under non-irrigated conditions (M2) treatment significantly decreased the canopy temperature, improved the photosynthetic efficiency expressed by chlorophyll fluorescence (Fv/Fm) and the fruit setting, significantly increased the total carotenoids and lycopene concentration of fruits but increased the ratio of green yield. Using deficit irrigation, (M2) plants produced more and larger weighed red fruits than (M1) plants but the β carotene, lutein and lycopene concentration of fruits, except for the vitamin C, decreased. Under severe drought conditions the mycorrhizal inoculations positively influenced the all carotenoids and lycopene concentration of fruits (r = 0.8150, r = 0.7837), but their impact was negative under deficit irrigation. Under water deficiency (I0, DI) the mycorrhizal symbiosis increased the marketable yield and resulted in a 33% increase in green yield and an 18 % increase in the total carotenoids content in dry years but the unmarketable yield decreased. Under water deficiency (M2) treatment produce more marketable yield resulting in 9.8% higher total carotenoids in the tomato fruits than (M1) treatment under field conditions.


2019 ◽  
Vol 64 (2) ◽  
pp. 165-174
Author(s):  
Dragan Milatovic ◽  
Mirjana Radovic ◽  
Gordan Zec ◽  
Djordje Boskov

The paper examines the influence of three clonal rootstocks ('Pixy', 'Fereley' and 'St. Julien A') along with seedlings of Myrobalan (control) on the growth, yield and fruit quality of the plum cultivar 'Cacanska Rana'. Research was conducted in the area of the Belgrade Danube basin for the six-year period (2013-2018). In comparison to control, all three clonal rootstocks have shown a significant effect on the decrease of vigor expressed as a trunk cross-sectional area. The lowest vigor was found in trees on the 'Pixy' rootstock, then on 'Fereley' and 'St. Julien A' rootstocks. Regarding the rootstocks 'Fereley' and 'St. Julien A', significantly higher fruit set and yields were achieved in comparison to control. Clonal rootstocks induced an increase in the yield per hectare ranging from 72% to 93% compared to Myrobalan. The highest yield efficiency was found in the trees on the 'Fereley' rootstock, followed by the yields observed in the trees on the 'Pixy' and 'St. Julien A' rootstocks. Significantly higher fruit weight compared to control was obtained in the trees on the 'Fereley' rootstock. Rootstocks did not show any significant effect on the soluble solids and total acid contents of the fruit. Based on the results obtained, it can be concluded that all three clonal rootstocks showed better results than Myrobalan, and can be recommended for establishing intensive plum plantations with higher planting density. The best results in terms of yield and fruit quality were obtained with the 'Fereley' rootstock.


2020 ◽  
Vol 30 (6) ◽  
pp. 789-796
Author(s):  
Roy D. Flanagan ◽  
Jayesh B. Samtani ◽  
Mikel Ann Manchester ◽  
Stephanie Romelczyk ◽  
Charles S. Johnson ◽  
...  

Strawberries (Fragaria ×ananassa) are one of the major high-value crops in North America. There is increasing interest in commercial strawberry production for local markets in Virginia and surrounding states, but information on the performance of newer cultivars is extremely limited. We tested 10 commercially available June-bearing cultivars [Benicia, Camarosa, Camino Real, Chandler, Strawberry Festival, Flavorfest, FL Radiance, Treasure, Sweet Charlie, and Winterstar™ (FL 05-107)] and two day-neutral cultivars (Albion and San Andreas) for their spring and summer fruiting capacity in Virginia production systems in a randomized, replicated study, at three on-farm locations. Data were collected on vegetative growth, yield performance, fruit quality, sweetness, and fruit diameter. Cultivars with the highest total yields averaged across all three locations were Benicia, Camino Real, Chandler, and Camarosa. ‘Camino Real’ had the highest marketable yield at all three locations, not significantly different from ‘Chandler’, and ‘Benicia’ and ‘Camarosa’ had the highest marketable yield at two of the three locations. ‘Flavorfest’ and ‘Sweet Charlie’ had the highest total soluble solids concentration for the harvest season. Overall, for all locations, ‘Benicia’ and ‘Camino Real’ had the largest fruit diameter, and ‘Strawberry Festival’ had the smallest fruit diameter.


2021 ◽  
Vol 13 (18) ◽  
pp. 10187
Author(s):  
Trevor W. Crosby ◽  
Yi Wang

Decisions in irrigation management can greatly impact the overall sustainability of potato production. A field study was conducted in 2018 and 2019 to evaluate the impacts of different irrigation regimes on yield and quality of three russet potato varieties. For Russet Burbank, fry quality at harvest and at 4 and 8 months after harvest was assessed. During early growth stages, the standard practice of irrigating to maintain 60–80% soil moisture was employed. The irrigation treatments were applied during the late tuber bulking and maturation growth stages, and consisted of irrigation at 125%, 100%, 75%, and 50% of daily evapotranspiration (ET). We found that 125%ET provided no increase in total yield and marketable yield compared to other treatments in 2018, and it produced similar marketable yield to 100%ET in 2019. Total yield, but not marketable yield, of 125%ET and 100%ET was significantly higher than the number under 50%ET in 2019. In both years, increasing irrigation rate led to a decrease in irrigation efficiency and water-use efficiency. Irrigation rate had no significant effects on tuber quality at harvest and during storage. This study indicated that over-irrigation at 125%ET was not beneficial to profitable potato production in the Upper Midwest of the US, and deficit irrigation at 75%ET during late tuber bulking and tuber maturation could potentially result in more sustainable water use while not jeopardizing tuber growth. The results support the possibility of adopting late-season deficit irrigation for growing potatoes in the region, though more years of research would allow for a better understanding of the impacts of this practice.


Author(s):  
Edgars Rubauskis ◽  
Māra Skrīvele ◽  
Silvija Ruisa ◽  
Daina Feldmane

In 1998, a trial was established with cultivars ‘Iputj’ and ‘Krupnoplodnaya’ at the Latvia State Institute of Fruit-Growing. A VOEN covering system was installed on part of the orchard in summer 2008. Considerable lowering of the canopy and renewed pruning were carried out throughout the trial. During 2009-2012, sweet cherry growth, yield and fruit quality were monitored. The cover was installed before flowering in each spring and uncovered after harvest. The cultivar ‘Krupnoplodnaya’ had a tendency for faster canopy growth under VOEN. Influence of VOEN cover on total yield was not significant, but had a positive tendency on marketable yield. In 2012, the marketable yield was 85% under VOEN, but only 53% without cover due to high precipitation. The cover decreased fruit decay significantly. Fruits damaged by birds (bird pecks) varied year by year. In the first part of the observation period, many damaged fruits were observed also under VOEN, but later the damage was decreased due to installed bird control devices. The fruits of sweet cherries were larger under cover. A positive effect of cover on amount of soluble solids and phenols in fruits was observed for cultivar ‘Krupnoplodnaya’ in 2011.


2021 ◽  
Vol 13 (12) ◽  
pp. 6880
Author(s):  
Mohammad Amdadul Haque ◽  
Siti Zaharah Sakimin ◽  
Phebe Ding ◽  
Noraini Md. Jaafar ◽  
Mohd Khanif Yusop ◽  
...  

In agricultural production, nitrogen loss leads to economic loss and is a high environmental risk affecting plant growth, yield, and quality. Use of the N fertilizer with a urease inhibitor is thus necessary to minimize N losses and increase the efficiency of N. This study aimed to evaluate the effects of N-(n-butyl) Thiophosphoric Triamide (NBPT) on the growth, yield, and quality of pineapple. The experiment involved two foliar fertilizer treatments: 1% (w/v) urea solution with NBPT (2.25 mL kg−1 urea) was treated as NLU (NBPT Liquid Urea), and the same concentration of urea without NBPT served as the control. Both were applied 12 times, starting 1 month after planting (MAP) and continuing once a month for 12 months. The application of urea with NBPT notably increased the above-ground dry biomass per plant (20% and 10% at 8 and 12 MAP, respectively), leaf area per plant (23% and 15% at 8 and 12 MAP, respectively), N accumulation per plant (10%), PFPN (Partial Factor Productivity) (13%), and average fruit weight (15%) compared to the treatment with urea alone (control). The analysis of quality parameters indicated that urea with NBPT improves TSS (Total Soluble Solids) (19%), ascorbic acid (10%), and sucrose (14%) but reduces the total organic acid content (21%) in pineapple. When using urea with a urease inhibitor (NBPT), there was a significant improvement in growth, yield, quality, and nitrogen use efficiency, with the additional benefit of reduced nitrogen losses, in combination with easy handling. Hence, urea with a urease inhibitor can be used as a viable alternative for increasing pineapple yield by boosting growth with better fruit quality.


2021 ◽  
Vol 13 (4) ◽  
pp. 1759
Author(s):  
Said A. Hamido ◽  
Kelly T. Morgan

The availability and proper irrigation scheduling of water are some of the most significant limitations on citrus production in Florida. The proper volume of citrus water demand is vital in evaluating sustainable irrigation approaches. The current study aims to determine the amount of irrigation required to grow citrus trees at higher planting densities without detrimental impacts on trees’ water relation parameters. The study was conducted between November 2017 and September 2020 on young sweet orange (Citrus sinensis) trees budded on the ‘US-897’ (Cleopatra mandarin x Flying Dragon trifoliate orange) citrus rootstock transplanted in sandy soil at the Southwest Florida Research and Education Center (SWFREC) demonstration grove, near Immokalee, Florida. The experiment contained six planting densities, including 447, 598, and 745 trees per ha replicated four times, and 512, 717, and 897 trees per ha replicated six times. Each density treatment was irrigated at 62% or 100% during the first 15 months between 2017 and 2019 or one of the four irrigation rates (26.5, 40.5, 53, or 81%) based on the calculated crop water supplied (ETc) during the last 17 months of 2019–2020. Tree water relations, including soil moisture, stem water potential, and water supplied, were collected periodically. In addition, soil salinity was determined. During the first year (2018), a higher irrigation rate (100% ETc) represented higher soil water contents; however, the soil water content for the lower irrigation rate (62% ETc) did not represent biological stress. One emitter per tree regardless of planting density supported stem water potential (Ψstem) values between −0.80 and −0.79 MPa for lower and full irrigation rates, respectively. However, when treatments were adjusted from April 2019 through September 2020, the results substantially changed. The higher irrigation rate (81% ETc) represented higher soil water contents during the remainder of the study, the lower irrigation rate (26.5% ETc) represents biological stress as a result of stem water potential (Ψstem) values between −1.05 and −0.91 MPa for lower and higher irrigation rates, respectively. Besides this, increasing the irrigation rate from 26.5% to 81%ETc decreased the soil salinity by 33%. Although increasing the planting density from 717 to 897 trees per hectare reduced the water supplied on average by 37% when one irrigation emitter was used to irrigate two trees instead of one, applying an 81% ETc irrigation rate in citrus is more efficient and could be managed in commercial groves.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Christopher Menzel

Five strawberry (Fragaria × ananassa Duch.) cultivars were grown in Queensland, Australia to determine whether higher temperatures affect production. Transplants were planted on 29 April and data collected on growth, marketable yield, fruit weight and the incidence of small fruit less than 12 g until 28 October. Additional data were collected on fruit soluble solids content (SSC) and titratable acidity (TA) from 16 September to 28 October. Minimum temperatures were 2 °C to 4 °C higher than the long-term averages from 1965 to 1990. Changes in marketable yield followed a dose-logistic pattern (p < 0.001, R2s = 0.99). There was a strong negative relationship between fruit weight (marketable) and the average daily mean temperature in the four or seven weeks before harvest from 29 July to 28 October (p < 0.001, R2s = 0.90). There were no significant relationships between SSC and TA, and temperatures in the eight days before harvest from 16 September to 28 October (p > 0.05). The plants continued to produce a marketable crop towards the end of the season, but the fruit were small and more expensive to harvest. Higher temperatures in the future are likely to affect the economics of strawberry production in subtropical locations.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 756
Author(s):  
AbdAllah M. El-Sanatawy ◽  
Ahmed S. M. El-Kholy ◽  
Mohamed M. A. Ali ◽  
Mohamed F. Awad ◽  
Elsayed Mansour

Water shortage is a major environmental stress that destructively impacts maize production, particularly in arid regions. Therefore, improving irrigation management and increasing productivity per unit of water applied are needed, especially under the rising temperature and precipitation fluctuations induced by climate change. Laboratory and field trials were carried out in the present study, which were aimed at assessing the possibility of promoting maize germination, growth, grain yield and crop water productivity (CWP) using seed priming under different irrigation regimes. Two seed priming treatments, i.e., hydro-priming and hardening versus unprimed seeds, were applied under four irrigation regimes, i.e., 120, 100, 80 and 60% of estimated crop evapotranspiration (ETc). The obtained results indicated that increasing irrigation water from 100% up to 120% ETc did not significantly increase grain yield or contributing traits, while it decreased CWP. Deficit irrigation of 80 and 60% ETc gradually decreased grain yield and all attributed traits. Seed priming significantly ameliorated seedlings’ vigor as indicated by earlier germination, higher germination percentage, longer roots and shoots, and heavier fresh and dry weight than unprimed seeds with the superiority of hardening treatment. Additionally, under field conditions, seed priming significantly increased grain yield, yield contributing traits and CWP compared with unprimed treatment. Interestingly, the results reflect the role of seed priming, particularly hardening, in mitigating negative impacts of drought stress and enhancing maize growth, grain yield and attributed traits as well as CWP under deficit irrigation conditions. This was demonstrated by a significant increase in grain yield and CWP under moderate drought and severe drought conditions compared with unprimed treatment. These results highlight that efficient irrigation management and seed priming can increase maize yield and water productivity in arid environments.


Sign in / Sign up

Export Citation Format

Share Document