scholarly journals Fungal Endophytes in Knock Out® Rose and Performance Effects of Entomopathogens on Marigold and Zinnia

HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1791-1798 ◽  
Author(s):  
Kevin M. Heinz ◽  
Polly A. Harding ◽  
Maria Julissa Ek-Ramos ◽  
Heather Hernandez ◽  
Peter C. Krauter ◽  
...  

Endophytic fungi are increasingly studied for their ability to enhance plant performance in field crops, yet there are few equivalent studies in floricultural crops. Given the economic importance of these crops and pressures faced by growers to produce plants of high aesthetic quality, we surveyed the natural occurrence of foliar fungal endophytes in Knock Out® roses to identify candidate beneficial isolates. We also tested the effects of entomopathogenic fungal inocula on marigold and zinnia plant growth using different application approaches. Our survey of Knock Out® rose foliage collected from five sites within central Texas revealed at least 24 different fungal genera and 30 probable species, including some isolates providing plant stress tolerance and pathogens or antagonists of insects and nematode pests. The effects of entomopathogen inocula on plant growth varied with host plant (marigold vs. zinnia) and inoculation method (soil drench vs. seed soak). Plant responses were complex, but inoculation with Isaria fumosorosea Wize tended to have a negative effect on plant performance characteristics whereas Beauveria bassiana (Bals.-Criv.) Vuill. tended to have positive effects. When applied to marigold as a seedcoating, I. fumosorosea reduced germination, seedling fresh weight, and produced seedlings with a less compact form. By contrast, seeds inoculated with B. bassiana required less time to germinate, had higher germination rates, and increased the plant compactness. These results show that the impact of fungal entomopathogens applied as endophytes depends on the specific fungi-plant combination being examined. The effect of plant inoculation with entomopathogenic fungi within a pest management context requires further evaluation.

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1273
Author(s):  
Camilo Chiang ◽  
Daniel Bånkestad ◽  
Günter Hoch

To transfer experimental findings in plant research to natural ecosystems it is imperative to reach near to natural-like plant performance. Previous studies propose differences in temperature and light quantity as main sources of deviations between indoor and outdoor plant growth. With increasing implementation of light emitting diodes (LED) in plant growth facilities, light quality is yet another factor that can be optimised to prevent unnatural plant performance. We investigated the effects of different wavelength combinations in phytotrons (i.e., indoor growth chambers) on plant growth and physiology in seven different plant species from different plant functional types (herbs, grasses and trees). The results from these experiments were compared against a previous field trial with the same set of species. While different proportions of blue (B) and red (R) light were applied in the phytotrons, the mean environmental conditions (photoperiod, total radiation, red to far red ratio and day/night temperature and air humidity) from the field trial were used in the phytotrons in order to assess which wavelength combinations result in the most natural-like plant performance. Different plant traits and physiological parameters, including biomass productivity, specific leaf area (SLA), leaf pigmentation, photosynthesis under a standardised light, and the respective growing light and chlorophyll fluorescence, were measured at the end of each treatment. The exposure to different B percentages induced species-specific dose response reactions for most of the analysed parameters. Compared with intermediate B light treatments (25 and/or 35% B light), extreme R or B light enriched treatments (6% and 62% of B respectively) significantly affected the height, biomass, biomass allocation, chlorophyll content, and photosynthesis parameters, differently among species. Principal component analyses (PCA) confirmed that 6% and 62% B light quality combinations induce more extreme plant performance in most cases, indicating that light quality needs to be adjusted to mitigate unnatural plant responses under indoor conditions.


2015 ◽  
Vol 25 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Youping Sun ◽  
Genhua Niu ◽  
Andrew K. Koeser ◽  
Guihong Bi ◽  
Victoria Anderson ◽  
...  

As the green industry is moving toward sustainability to meet the demands of society, the use of biocontainers as alternatives to petroleum-based plastic containers has drawn significant attention. Field trials of seven plantable biocontainers (coir, manure, peat, rice hull, soil wrap, straw, and wood fiber) were conducted in 2011 and 2012 at five locations in the United States to assess the influence of direct-plant biocontainers on plant growth and establishment and the rate of container decomposition in landscape. In 2011, container type did not affect the growth of any of the three species used in this study with an exception in one location. The three species were ‘Sunpatiens Compact Magenta’ new guinea impatiens (Impatiens ×hybrida), ‘Luscious Citrus’ lantana (Lantana camara), and ‘Senorita Rosalita’ cleome (Cleome ×hybrida). In 2012, the effect of container type on plant growth varied with location and species. Cleome, new guinea impatiens, and lantana plants grown in coir and straw containers were in general smaller than those in peat, plastic, rice hull, and wood fiber containers. After 3 to 4 months in the field, manure containers had on average the highest rate of decomposition at 88% for all five locations and two growing seasons. The levels of decomposition of other containers, straw, wood fiber, soil wrap, peat, coir, and rice hull were 47%, 46%, 42%, 38%, 25%, and 18%, respectively, in descending order. Plantable containers did not hinder plant establishment and posttransplant plant growth. The impact of container type on plant growth was smaller compared with that of location (climate). Similarly, the impact of plant species on pot decomposition was smaller compared with that of pot material.


2021 ◽  
Author(s):  
Heather A Hager ◽  
Maija Gailis ◽  
Jonathan A Newman

Host-specific Epichloë spp. endophytic fungal symbionts of pooid grasses that produce herbivore-deterring alkaloids and alter the grass host's metabolite and protein profiles. Early observations suggested that Epichloë may have negative allelopathic effects on neighbouring plant species, particularly Trifolium spp. clovers, but subsequent allelopathy tests produced variable results. We examined two hypotheses: (1) Epichloë strains differ in allelopathic effect, and (2) Epichloë allelopathy negatively affects other plant species. We performed a greenhouse experiment using root exudates from Lolium perenne L. hosting different E. festucae var. lolii (Latch, M.J. Chr. & Samuels) C.W. Bacon & Schardl strains to compare their allelopathic effects on native legumes and forbs. We then used meta-analysis to examine the evidence to date for allelopathic effects of Epichloë endophytes. We found little difference in effect among E. festucae var. lolii strains and very little evidence for negative allelopathic effects of Epichloë in cool-season grasses across a range of methodologies, target plant species, and response measures. Negative allelopathic effects were detected only for root hair measures, which were from a single study. Positive effects on biomass were found for some experimental subgroups, including legumes. However, the majority of response variables showed no evidence for Epichloë allelopathy. Although there is currently little evidence for negative Epichloë allelopathic effects, our meta-analysis identified several research gaps. Experiments testing the functional belowground effects of Epichloë presence may help to determine its effects on non-host plant performance via plant-soil feedbacks.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 115
Author(s):  
Alaa I. B. Abou-Sreea ◽  
Marwa Kamal ◽  
Dalia M. El Sowfy ◽  
Mostafa M. Rady ◽  
Gamal F. Mohamed ◽  
...  

Phosphorus (P) is an essential macronutrient necessary for plant growth, development, and reproduction. Two field experiments were carried out in 2018/2019 and 2019/2020 on P-deficient soil to evaluate the impact of foliar fertilization with nanophosphorus (nP) on growth, yield, and physio-biochemical indices, as well as trigonelline content of fenugreek plants under deficient irrigation (dI) stress (a deficit of 20 and 40% of crop evapotranspiration; dI-20 and dI-40). The growth and yield traits, leaf integrity (relative water content and membrane stability index), photosynthetic pigment contents, leaf and seed P contents, and stem and leaf anatomical features significantly decreased under dI-20, with greater reductions recorded under dI-40. In contrast, water-use efficiency, osmoprotective compounds, including free amino acids, soluble sugars, proline, and trigonelline, along with antioxidant contents (ascorbate, glutathione, phenolics, and flavonoids) and their activity increased significantly under both dI-20 and dI-40. However, foliar feeding with nano-P considerably increased plant growth and yield traits, leaf integrity, photosynthetic pigments contents, leaf and seed P contents, and anatomical features. Besides, water-use efficiency, osmoprotectant contents, and antioxidant content and activity were further increased under both dI-20 and dI-40. The positive effects were more pronounced with the smaller nP (25 nm) than the larger nP (50 nm). The results of this study backed up the idea of using foliar nourishment with nP, which can be effective in modulating fenugreek plant growth and seed production.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Yin Bao ◽  
Scott Zarecor ◽  
Dylan Shah ◽  
Taylor Tuel ◽  
Darwin A. Campbell ◽  
...  

Abstract Background Assessing the impact of the environment on plant performance requires growing plants under controlled environmental conditions. Plant phenotypes are a product of genotype × environment (G × E), and the Enviratron at Iowa State University is a facility for testing under controlled conditions the effects of the environment on plant growth and development. Crop plants (including maize) can be grown to maturity in the Enviratron, and the performance of plants under different environmental conditions can be monitored 24 h per day, 7 days per week throughout the growth cycle. Results The Enviratron is an array of custom-designed plant growth chambers that simulate different environmental conditions coupled with precise sensor-based phenotypic measurements carried out by a robotic rover. The rover has workflow instructions to periodically visit plants growing in the different chambers where it measures various growth and physiological parameters. The rover consists of an unmanned ground vehicle, an industrial robotic arm and an array of sensors including RGB, visible and near infrared (VNIR) hyperspectral, thermal, and time-of-flight (ToF) cameras, laser profilometer and pulse-amplitude modulated (PAM) fluorometer. The sensors are autonomously positioned for detecting leaves in the plant canopy, collecting various physiological measurements based on computer vision algorithms and planning motion via “eye-in-hand” movement control of the robotic arm. In particular, the automated leaf probing function that allows the precise placement of sensor probes on leaf surfaces presents a unique advantage of the Enviratron system over other types of plant phenotyping systems. Conclusions The Enviratron offers a new level of control over plant growth parameters and optimizes positioning and timing of sensor-based phenotypic measurements. Plant phenotypes in the Enviratron are measured in situ—in that the rover takes sensors to the plants rather than moving plants to the sensors.


Author(s):  
Abhay Kumar ◽  
Stephen Joseph ◽  
Ellen R. Graber ◽  
Sara Taherysoosavi ◽  
David R. G. Mitchell ◽  
...  

Abstract Background Fostering plant growth and improving agricultural yields by adding “macro”-sized biochar to soil has been extensively explored. However, the impact and mechanism of action of aqueous extracts of biochar applied as foliar fertilizer on plant growth and physiology is poorly understood, and was the objective of this study. Extracts were produced from biochars derived from pine wood:clay:sand (PCS-BC; 70:15:15) and wheat straw:bird manure (WB-BC; 50:50) and tested at two dilutions each. The plant influence of the biochar extracts and dilutions were compared with chemical fertilizer made up to the same minor trace element compositions as the applied extracts and a control treatment consisting of only deionized water. Results The WB-BC extract was more alkaline than the PCS-BC extract and exhibited higher electrical conductivity values. Similar to the biochars from which they were derived, the WB-BC extract had higher concentrations of dissolved mineral elements and organic matter than the PCS-BC extract. Despite major differences in chemical composition between the PCS-BC and WB-BC extracts, there was virtually no difference in plant performance between them at any chosen dilution. Foliar application of PCS25, WB50, and WB100 led to a significant increase in the plant fresh biomass in comparison to their corresponding chemical fertilizer and to deionized water. Plant growth parameters including number of leaves and chlorophyll contents in plants treated with biochar extract foliar sprays were significantly higher than in all the other treatments. Electron microscopy and spectroscopy studies showed the deposition of macro- and nanoscale organomineral particles and agglomerates on leaf surfaces of the examined PCS25-treated plant. Detailed study suggests that carbon nanomaterials and TiO2 or Si-rich nanoscale organomineral complexes or aluminosilicate compounds from biochar extract were main contributors to increased plant growth and improved plant performance. Conclusion These results suggest that biochar extracts have the potential to be used as nanofertilizer foliar sprays for enhancing plant growth and yield.


2021 ◽  
Author(s):  
Phil Haygarth ◽  
Malika Mezeli ◽  
Timothy George ◽  
Roy Neilson ◽  
Martin Blackwell

<p>The association of microorganisms and soil nutrient cycles has been observed for over 200 years, and their importance in the soil phosphorus (P) cycle is well documented. In-soil trophic interactions between bacteria and bacterivorous nematodes have been implicated in increased plant access to soil organic P (P<sub>o</sub>).<sub></sub>However, the existing data remains inconclusive and lacks detail and predictability.  This work aimed to (1) assess the impact of nematodes as an additional trophic-level on P<sub>o</sub> use by plants in arable systems and (2) further understand the mechanisms of in-soil trophic interactions in improving plant acquisition of P<sub>o</sub>. To address these aims criteria based meta-analysis, glasshouse plant growth trials, in vitro and soil, and long term experimental (LTE) platforms were used.  Results led to the conclusion that nematodes did not improve plant acquisition of P<sub>o</sub> per se. Time, soil P concentration and soil biological community composition had significant impacts on plant response. Although these factors were identified in two contrasting studies, their impacts on plant responses were stochastic. Complexity, which describes the average number of trophic links per species, framed an understanding of these data where they evaded predictability, specifically when considering the temporal nature of these relationships. For example, data from the meta-analysis and the plant growth trials demonstrated it was not simply the additive effect of the number of species or the addition of a specific species which resulted in predictable plant P responses.  Nematode community analysis from the LTE’s yielded characteristics indicative of stability in the biotic component of systems previously considered disturbed (arable). This exposed the question of the nature of disturbance (whether natural or anthropogenic). Additionally, it highlighted the importance of which successional time-point was being studied and the impact this has on the data captured.  Data collected from this long-term experiment, plant growth trials and the meta-analysis highlights the importance of the temporal resolution, and the time-point at which we are observing these dynamic systems. It is argued that in-conclusive or negative results could represent true details of these systems, where they represent points of transition between stable and/or predictable states and a usual characteristic of the complex system.  Therefore, inconclusive data should not be omitted from the research library, exclusion of such data could lead to incomplete observations and incorrect assumptions. Better practices should be designed and implemented to ensure publication bias is not a barrier to our understanding of these systems.</p>


2020 ◽  
Vol 21 (2) ◽  
pp. 49
Author(s):  
NurulNahar Esa ◽  
Adam Puteh ◽  
Mazidah Mat ◽  
Roslan Ismail ◽  
Mohd Rafii Yusop

<p>Rice blast is one of the most critical limiting factors for rice plant growth performance. Silicon has been shown to have positive effects in controlling several plant diseases. The study aimed to investigate the impact of silicon levels on rice yield, silicon content, and panicle blast in rice plants. The study was set up as a 2 x 5 factorial experiment with three replications and arranged in a randomized complete block design. The first factors were two rice cultivars, MARDI Siraj 297 (resistant) and MR 263 (susceptible). The second factors were five levels of calcium silicate (0 g, 4 g, 8 g, 12 g, and 16 g) applied to 40 kg soil per pot. The standard fertilizers, i.e., N, P2 O5, and K2 O, were applied four times at the recommended dosage. High virulent of Pyricularia oryzae conidia (4 x 104 conidia ml-1) was sprayed using a hand sprayer (30 ml pot-1) at the time of fully completed panicle development (65 days after planting). Observed parameters were plant growth (height and culm length), yields (spikelets per panicle, grain filling percentage, and harvest index), panicle blast severity, and silica content in leaf, stem, and panicle. The results showed that silicon application reduced panicle blast severity, leading to higher yield per plant. The increase of the rice yield was a result of a significant increae in panicle per m2 , spikelet per m2 , and percentage of filled grain. Panicle blast greatly affected the performance of spikelet number per m2 , percentage of filled grain, grain weight, and yield per plant for the susceptible cultivar. Application of calcium silicate 10 g 40 kg-1 soil per pot at panicle initiation is recommended to reduce panicle blast severity hereby improve grain yield.</p>


2021 ◽  
Author(s):  
Justin M. Valliere ◽  
Haylee M. D’Agui ◽  
Kingsley W. Dixon ◽  
Paul G. Nevill ◽  
Wei San Wong ◽  
...  

Abstract Purpose Biotic and abiotic properties of soils can hinder or facilitate ecological restoration, and management practices that impact edaphic factors can strongly influence plant growth and restoration outcomes. Salvaged topsoil is an invaluable resource for mine-site restoration, and a common practice is topsoil transfer from mined areas to restoration sites. However, direct transfer is often not feasible, necessitating storage in stockpiles. We evaluated the effects of topsoil stockpiling on plant performance across diverse ecosystems impacted by mining throughout Western Australia. Methods We conducted a bioassay experiment using a widespread native Acacia species to assess how topsoil storage might impact plant growth, physiology, and nodulation by N-fixing bacteria using soils from native reference vegetation and stockpiled soils from six mine sites across Western Australia. Results Plant responses varied across mine sites, but overall plants performed better in soils collected from native vegetation, exhibiting greater biomass, more root nodules, and higher water-use efficiency compared to those grown in stockpiled soils. Soil physiochemistry showed few and minor differences between native soils and stockpiles. Conclusion Results strongly suggest observed differences in plant performance were biotic in nature. This study highlights the negative effects of topsoil storage on the biological integrity of soil across diverse ecosystems, with important implications for mine-site restoration; our results show that topsoil management can strongly influence plant performance, and stockpiled soils are likely inferior to recently disturbed topsoil for restoration purposes. We also use this study to illustrate the utility of bioassays for assessing soil quality for ecological restoration.


2021 ◽  
pp. 15-21
Author(s):  
Fatima Hasan Al Hamedi ◽  
Kandhan Karthishwaran ◽  
Mohammed Abdul Salem

Climate change is a serious problem affecting worldwide agricultural production and encourages researchers to investigate plant responses and grow crops under changed growing conditions. In arid and semiarid regions, treated wastewater is a common alternative source of water for irrigation. The proposed study examined the impact of irrigation with treated wastewater and the effects on the growth of wheat crops of environmental stress factors, including UV radiation and carbon dioxide. The experiment was conducted in a transparent Open Top Chambers facility and the treatments were administered in the hot UAE climate for ninety days. In order to understand the physiological mechanisms of plant adaptation under the conditions given, physiological and biochemical characteristics such as anti-oxidant enzymes have been assessed. The results revealed that the elevated CO2 level increased the growth parameters, whereas when compared to control, the UVB treatment affected plant growth. In the seedling process, established under regulated development, the differential response of antioxidant activity, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) activities were observed among intrinsic biochemical activity in the selected Wheat varieties. Our findings show that wheat varieties are suitable as industrial crops for the production of antioxidants under irrigation with treated wastewater because the quantity and quality of their yield have not been affected. This practice will contribute to a clean environment and the stress on freshwater will be reduced by its reuse.


Sign in / Sign up

Export Citation Format

Share Document