scholarly journals Influence of Fertilizer Placement on Plant Quality, Root Distribution, and Weed Growth in Container-grown Tropical Ornamental Plants

2003 ◽  
Vol 13 (2) ◽  
pp. 305-308 ◽  
Author(s):  
Timothy K. Broschat ◽  
Kimberly K. Moore

In two experiments, chinese hibiscus (Hibiscus rosa-sinensis), bamboo palm (Chamaedorea seifrizii), areca palm (Dypsis lutescens), fishtail palm (Caryota mitis), macarthur palm (Ptychosperma macarthurii), shooting star (Pseuderanthemum laxiflorum), downy jasmine (Jasminum multiflorum), plumbago (Plumbago auriculata), alexandra palm (Archontophoenix alexandrae), and foxtail palm (Wodyetia bifurcata) were transplanted into 6.2-L (2-gal) containers. They were fertilized with Osmocote Plus 15N-3.9P-10K (12-to14-month formulation) (Expt. 1) or Nutricote Total 18N-2.6P-6.7K (type 360) (Expt. 2) applied by either top dressing, substrate incorporation, or layering the fertilizer just below the transplanted root ball. Shoot dry weight, plant color, root dry weights in the upper and lower halves of the root ball, and weed shoot dry weight were determined when each species reached marketable size. Optimal fertilizer placement method varied among the species tested. With the exception of areca palm, none of the species tested grew best with incorporated fertilizer. Root dry weights in the lower half of the root ball for chinese hibiscus, bamboo palm, and downy jasmine were greatest when the fertilizer was layered and root dry weights in the upper half of the root ball were greatest for top-dressed chinese hibiscus. Weed growth was lower in pots receiving layered fertilizer for four of the six palm species tested.

2002 ◽  
Vol 12 (2) ◽  
pp. 226-229 ◽  
Author(s):  
Timothy K. Broschat

Five species of tropical ornamental plants—artillery fern (Pilea serpyllacea), pleomele (Dracaena reflexa), fishtail palm (Caryota mitis), areca palm (Dypsis lutescens), and sunshine palm (Veitchia mcdanielsii)—were grown in containers under full sun, 55% shade, or 73% shade. They were fertilized every 6 months with Osmocote Plus 15-9-12 (15N-4P-10K) at rates of 3, 6, 12, 18, 24, 30, and 36 g/pot (0.1, 0.2, 0.4, 0.6, 0.8, 1.1, and 1.3 oz/pot). For pleomele and the three palm species, optimum shoot dry weights and color ratings were similar among the three light intensities tested. However, artillery fern grown in full sun required fertilizer rates at least 50% higher for optimum shoot dry weight and color than under 55% or 73% shade. Light intensit × fertilizer rate interactions were highly significant for pilea and fishtail palm color and dry weight and sunshine palm and pleomele color.


2017 ◽  
Vol 27 (5) ◽  
pp. 639-643 ◽  
Author(s):  
Carey Grable ◽  
Joshua Knight ◽  
Dewayne L. Ingram

Although controlled-release fertilizers (CRFs) have been used in container-grown ornamental plants for decades, new coating technologies and blends of fertilizers coated for specific release rates are being employed to customize fertility for specific environments and crops. A study was conducted in the transitional climate of Kentucky to determine the nutrient release rates of three controlled-release blends of 8- to 9-month release and growth response of ‘Double Play Pink’ japanese spirea (Spiraea japonica) and ‘Smaragd’ arbovitae (Thuja occidentalis). Fertilizer 1 (16N–3.5P–8.3K–1.8Mg + trace elements) and Fertilizer 2 (18N–3.1P–8.3K–1.8Mg + trace elements) were prototype blends with different experimental polymer coatings. Fertilizer 3 was a blend of 18N–2.2P–6.6K–1.1Ca–1.4Mg–5.8S + trace elements, which combined 100% resin-coated prills with a polymer coating. Fertilizer 4 was commercially available 15N–3.9P–10K–1.3Mg–6S + trace elements. Fertilizer 3 released its nutrients earlier in the 12-week study than the other three fertilizers and resulted in lower shoot dry weight in both species. The new polymer coating technologies show promise for delivering a predicted release rate and are appropriate for container production of these woody shrubs in Kentucky. An interesting side note of this experiment was that leachate pH measurements across treatments averaged 1.2 units lower for arbovitae (6.3) than for japanese spirea (7.5) at week 12. It was assumed that chemical and/or biological reactions at the root/substrate interface in arbovitae moderated pH increases over the study.


HortScience ◽  
2006 ◽  
Vol 41 (7) ◽  
pp. 1704-1708 ◽  
Author(s):  
Luis Alonso Valdez-Aguilar ◽  
David William Reed

Response to alkalinity was evaluated in two hibiscus cultivars, Bimini Breeze and Carolina Breeze, grown in a soilless growing medium and in hydroponic culture. For soilless growing medium, plants were potted in a sphagnum peat–perlite-based substrate and irrigated with solutions containing 0 to 10 mm NaHCO3 for 12 weeks. In hydroponic culture, bare-rooted plants were transferred to a 9-L tray containing a Hoagland's nutrient solution prepared with NaHCO3 at the concentrations previously indicated. In soilless growing medium, shoot dry weight was minimally affected by NaHCO3 concentration for `Bimini Breeze', but `Carolina Breeze' exhibited a significant decrease in shoot mass with increasing NaHCO3 concentration. In hydroponic culture, increasing concentration of NaHCO3 induced a decrease in shoot and root mass in both cultivars, but root mass decrease was more pronounced in `Bimini Breeze'. In soilless growing medium, increasing the concentration of NaHCO3 caused an increase in growing medium pH. The pH increase was less pronounced for `Bimini Breeze' than for `Carolina Breeze', indicating a higher capacity for root zone acidification by `Bimini Breeze'. Newly developed leaves of both cultivars showed increasing chlorosis with increasing NaHCO3 concentration. However, `Bimini Breeze' was more tolerant because, according to regression models, 5.7 mm NaHCO3 would be required to reduce chlorophyll levels by 10%, compared with 2.2 mm for `Carolina Breeze', when grown in soilless medium. Fe reductase activity decreased when `Carolina Breeze' plants were grown in 5 mm NaHCO3. However, in `Bimini Breeze', Fe reductase activity was enhanced. These observations indicate that the increased tolerance of `Bimini Breeze' to increasing alkalinity is the result of enhanced Fe reductase activity and increased acidification of the root zone.


2002 ◽  
Vol 12 (2) ◽  
pp. 222-225 ◽  
Author(s):  
Monica L. Elliott ◽  
Timothy K. Broschat

A commercially available microbial inoculant (Plant Growth Activator Plus) that contains 50 microorganisms, primarily bacteria, was evaluated in a soilless container substrate to determine its effects on root bacterial populations and growth response of container-grown plants at three fertilizer rates. The tropical ornamental plants included hibiscus (Hibiscus rosa-sinensis `Double Red'), spathiphyllum (Spathiphyllum `Green Velvet') and areca palm (Dypsis lutescens). The bacterial groups enumerated were fluorescent pseudomonads, actinomycetes, heat-tolerant bacteria, and total aerobic bacteria. Analysis of the inoculant before its use determined that fluorescent pseudomonads claimed to be in the inoculant were not viable. The plant variables measured were plant color rating, shoot dry weight and root dry weight. Only hibiscus shoot dry weight and color rating increased in response to the addition of the inoculant to the substrate. Hibiscus roots also had a significant increase in the populations of fluores-cent pseudomonads and heat-tolerant bacteria. From a commercial production point of view, increasing fertilizer rates in the substrate provided a stronger response in hibiscus than did addition of the microbial inoculant. Furthermore, use of the inoculant in this substrate did not compensate for reduced fertilizer inputs.


2010 ◽  
Vol 20 (6) ◽  
pp. 957-962 ◽  
Author(s):  
Gabriele Amoroso ◽  
Piero Frangi ◽  
Riccardo Piatti ◽  
Alessio Fini ◽  
Francesco Ferrini

This research evaluated the effectiveness of biodegradable mulches for weed control in container-grown ‘Martin’ giant arborvitae (Thuja plicata) and measured the effects of these mulches on evaporation and substrate temperature. The experiment was carried out in the 2008 and 2009 growing seasons. Four biodegradable mulching materials were tested and compared with a chemical control (oxadiazon) and a non-mulched/non-treated control. Two levels of overhead irrigation were evaluated: 1) daily irrigation to container capacity (well watered) and 2) daily irrigation to 30% of container capacity (water stressed). Two weed management regimes were used: 1) hand weeding three times during the growing season and 2) no weeding until the end of the growing season. Plants were potted in 3-L containers and arranged in a split–split plot design in an experimental nursery. Ornamental shoot dry weight was measured at the end of the growing season. Weed shoot dry weight per container was recorded after each hand weeding. Water content per pot (as a percentage of water-holding capacity) was measured by weighing containers every 2 hours during the day. Substrate temperature was measured in the warmest period of the day. Mulches limited weed growth to the same extent as the chemical control. In 2008, mulched plants resulted in a higher shoot dry weight than non-treated and non-mulched plants, while in the second year, no differences were observed. The black color of the 3-L containers was probably the main factor driving substrate temperature increase, indicating mulching materials did not affect substrate temperatures. In both experiments, container water content was unaffected by mulching materials. Results seem to demonstrate that transpiration is the main component of water loss from container-grown giant arborvitae plants.


HortScience ◽  
2016 ◽  
Vol 51 (11) ◽  
pp. 1384-1388 ◽  
Author(s):  
Amanda Bayer ◽  
John Ruter ◽  
Marc W. van Iersel

Controlling the elongation of ornamental plants is commonly needed for shipping and aesthetic purposes. Drought stress can be used to limit elongation, and is an environmentally friendly alternative to plant growth regulators (PGRs). However, growers can be reluctant to expose plants to drought stress because they do not want to negatively affect overall plant quality and marketability. Knowing how and when stem elongation is affected by water availability will help to increase our understanding of how elongation can be controlled without reducing plant quality. Rooted Hibiscus acetosella Welw. ex Hiern. cuttings were grown in a growth chamber set to a 12-hour photoperiod at 25 °C. Two plants of similar size were used for each replication of the study to compare growth under well-watered and drought-stressed conditions. Time lapse photography was used to determine the diurnal patterns of elongation over the course of the replications. Evapotranspiration was measured using load cells. Well-watered and drought-stressed plants had similar diurnal patterns of elongation and evapotranspiration, demonstrating that both follow circadian rhythms and are not just responding to environmental conditions. Stem elongation was greatest at night and coincided with evapotranspiration decreases, with greatest elongation shortly after the onset of darkness. Elongation was minimal between 800 and 1000 hr when evapotranspiration increases. During the drought-stress portion of the replications, elongation of drought-stressed plants was 44% less than well-watered plants. Final plant height and shoot dry weight for the drought-stressed plants were 21% and 30% less than well-watered plants, respectively. Total leaf area, number of leaves, and number of new visible internodes were greater for well-watered plants than drought-stressed plants. Average length of visible internodes and leaf size were similar for drought-stressed and well-watered plants. If growers want to use drought stress for elongation control, they should ensure that plants are drought stressed before the onset of and during the dark period, when most elongation occurs.


2008 ◽  
Vol 18 (4) ◽  
pp. 671-677 ◽  
Author(s):  
Timothy K. Broschat

In two experiments, pasteurized poultry litter (PPL) was evaluated as a potential substitute for controlled-release fertilizers in the production of container-grown downy jasmine (Jasminum multiflorum), chinese hibiscus (Hibiscus rosa-sinensis), and areca palm (Dypsis lutescens). Downy jasmine and chinese hibiscus generally grew better when provided with PPL as a micronutrient source than with no micronutrients or with an inorganic micronutrient blend (MN). However, areca palm grew poorly with PPL as a fertilizer supplement compared with MN-fertilized areca palm. PPL provided high levels of ammonium nitrogen, phosphorus, and potassium during the first few weeks, but soil solution levels of these elements dropped off rapidly in subsequent weeks. The large amount of phosphorus leached from the containers fertilized with PPL is an environmental concern.


HortScience ◽  
2018 ◽  
Vol 53 (7) ◽  
pp. 1006-1011
Author(s):  
Yanjun Guo ◽  
Terri Starman ◽  
Charles Hall

Retail environments are rarely optimal for ornamental plants, and wilting caused by water stress is a major cause of postproduction shrinkage. The objective of this study was to determine the effect of two levels of substrate moisture content (SMC) applied during greenhouse production on angelonia (Angelonia angustifolia) ‘Angelface Blue’ and heliotrope (Heliotropium arborescens) ‘Simply Scentsational’ growth and physiological parameters and subsequent postproduction quality during simulated retail conditions. At the end of production, angelonia total plant shoot dry weight (DW) was reduced with 20% SMC compared with 40% SMC, and plants grown with 20% SMC had higher shoot coloring percentage, reduced internode length, and required less irrigation labor–related costs compared with 40% SMC. Heliotrope grown at 20% SMC produced the same size plant as 40% SMC, but had a higher shoot coloring percentage at the end of production and postproduction, indicating lower SMC resulted in higher visual quality compared with 40% SMC. For both species, 20% SMC increased plant visual quality compared with 40% SMC and reduced irrigation water input throughout production, resulting in reduced production costs and increased floral crop economic value.


1989 ◽  
Vol 69 (4) ◽  
pp. 1295-1300 ◽  
Author(s):  
PETER R. HICKLENTON ◽  
K. B. McRAE

Juniperus horizontalis ’Plumosa Compacta’ were grown in 3.8-L containers to compare the factorial effects of irrigation (top vs. capillary) and controlled release fertilizer placement (incorporated vs. surface-applied) on shoot nutrient content and growth. These treatments were compared with a liquid fertilized control. Shoot N contents on 30 June (31 d after potting) were highest in plants which were top-irrigated and supplied with incorporated Nutricote, but were lowest in these plants at the end of the season (28 Sept.). Top-irrigated, Nutricote-incorporated, and liquid-fertilized plants showed the highest shoot K contents on 30 June. Lowest shoot K occurred in the top-irrigated, Nutricote-incorporated treatment on 28 Sept. In comparison with N or K, shoot P showed much less variation over the growing season. Incremental branch growth was less when fertilizer was surface-applied than when it was incorporated, but end-of-season shoot dry weights were similar in all plants except those which were top irrigated and supplied with incorporated Nutricote. This treatment produced the highest end-of-season shoot dry weight and best overall growth. Seasonal growth was positively correlated with early season (30 June) shoot N and K contents.Key words: Controlled release fertilizer, Nutricote, irrigation, Juniper


2001 ◽  
Vol 11 (3) ◽  
pp. 456-460 ◽  
Author(s):  
Kimberly A. Klock-Moore ◽  
Timothy K. Broschat

In this study, areca palm (Dypsis lutescens), crossandra (Crossandra infundibuliformis), pentas (Pentas lanceolat), and philodendron (Philodendron) `Hope' plants were transplanted into containers filled with four growing substrates and watered daily, every 2 days, or every 3 days using subirrigation or overhead irrigation. Plants were grown in either a pine bark/sedge peat/sand substrate (BSS), Metro-mix 500 (MM), Pro-mix GSX (PM), or a 60% biosolid substrate (SYT). For both irrigation systems, final shoot dry weight of pentas, crossandra, philodendron, and areca palm plants in each substrate was greatest for plants watered every day and least for plants watered every 3 days. At all three irrigation frequencies, pentas, crossandra, and philodendron shoot dry weight in subirrigated pots filled with PM was greater than in overhead watered pots filled with PM. PM had the highest total pore space and moisture content of the four substrates examined. There was no difference in pentas, crossandra, or philodendron shoot dry weight between the irrigation systems, at all three irrigation frequencies, when plants were grown in BSS, MM, or SYT. However, for all four substrates and at all three irrigation frequencies, areca palm shoot dry weight was greater in overhead watered pots than in subirrigated pots. The final substrate electrical conductivity (EC) in all four subirrigated palm substrates was more than double the concentrations in overhead watered palm substrates. In this study, largest pentas, crossandra, and philodendron plants were grown in pots filled with PM and subirrigated daily, while largest areca palm plants were grown in pots filled with MM or SYT and watered overhead daily.


Sign in / Sign up

Export Citation Format

Share Document