scholarly journals Increasing Sustainability by Intercropping

1993 ◽  
Vol 3 (3) ◽  
pp. 309-312 ◽  
Author(s):  
R.M. Coolman ◽  
G.D. Hoyt

Plant interactions are both competitive and cooperative. Farmers use intercropping to the mutual advantage of both main and secondary crops in a multiple-crop-production system. A vegetable crop has a competitive advantage over a younger secondary cover crop interseeded before vegetable maturity. Non-legume intercropped cover crops can use soil N, while a legume intercrop can increase N in agricultural systems by biological N fixation. Intercropping also may be more efficient than monocropping in exploiting limited resources. Relay-planting main crop and intercrop components so that resource demands (nutrients, water, sunlight, etc.) occur during different periods of the growing season can be an effective means of minimizing interspecific competition. Intercropping systems often exhibit less crop damage associated with insect and plant pathogen attacks, and they provide weed control.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 94-94
Author(s):  
Russell C Carrell ◽  
Sandra L Dillard ◽  
Mary K Mullenix ◽  
Audrey Gamble ◽  
Russ B Muntifering

Abstract Use of cool-season annual cover crops through grazing has been shown to be a potential tool in extending the grazing season, while still mitigating environmental risks associated with warm-season row crop production. Although data describing the effects of grazing on soil health are not novel, effects of grazing length on animal performance and cover crop production are limited. The objective was to determine cattle performance and forage production when grazing a cool-season annual cover-crop. Twelve, 1.2-ha pastures were established in a four species forage mix and randomly allocated to be grazed through either mid-February (FEB), mid-March (MAR), or mid-April (APR) with a non-grazed control (CON). Three tester steers were randomly placed in each paddock and a 1:1 forage allowance was maintained in each paddock using put-and-take steers. Animals were weighed every 30 d for determination of average daily gain (ADG). Forage was harvested bi-weekly and analyzed for forage production, neutral detergent fiber (NDF), and acid detergent fiber (ADF). Fiber fractions were measured using an ANKOM fiber analyzer (ANKOM Tech, Macedon, NY). All data were analyzed using MIXED procedure of SAS version 9.4 (SAS Inst., Cary, NC). Differences in forage mass were detected between CON and FEB (3,694.75 vs. 2,539.68 kg/ha; P < 0.003), CON and MAR (3,694.75 vs. 1,823.45 kg/ha; P < 0.001), and CON and APR (3,694.75 vs. 1,976.23 kg/ha; P < 0.001). Differences in total gain/acre were detected between APR and MAR (212.24 vs. 101.74 kg/ha; P < 0.0001), APR and FEB (212.24 vs 52.65 kg/ha; P < 0.0001), and FEB and MAR (101.74 vs. 52.65 kg/ha; P < 0.003). No differences were detected for tester ADG (1.23 kg/day, P = 0.56), NDF (44.9%, P = 0.99), or ADF (27.2%, P = 0.92) among treatments. These results indicate that cattle removal date effected forage yield and total gain/hectare.


2021 ◽  
pp. 1-10
Author(s):  
X.M. Yang ◽  
W.D. Reynolds ◽  
C.F. Drury ◽  
M.D. Reeb

Although it is well established that soil temperature has substantial effects on the agri-environmental performance of crop production, little is known of soil temperatures under living cover crops. Consequently, soil temperatures under a crimson clover and white clover mix, hairy vetch, and red clover were measured for a cool, humid Brookston clay loam under a corn–soybean–winter wheat/cover crop rotation. Measurements were collected from August (after cover crop seeding) to the following May (before cover crop termination) at 15, 30, 45, and 60 cm depths during 2018–2019 and 2019–2020. Average soil temperatures (August–May) were not affected by cover crop species at any depth, or by air temperature at 60 cm depth. During winter, soil temperatures at 15, 30, and 45 cm depths were greater under cover crops than under a no cover crop control (CK), with maximum increase occurring at 15 cm on 31 January 2019 (2.5–5.7 °C) and on 23 January 2020 (0.8–1.9 °C). In spring, soil temperatures under standing cover crops were cooler than the CK by 0.1–3.0 °C at 15 cm depth, by 0–2.4 °C at the 30 and 45 cm depths, and by 0–1.8 °C at 60 cm depth. In addition, springtime soil temperature at 15 cm depth decreased by about 0.24 °C for every 1 Mg·ha−1 increase in live cover crop biomass. Relative to bare soil, cover crops increased near-surface soil temperature during winter but decreased near-surface soil temperature during spring. These temperature changes may have both positive and negative effects on the agri-environmental performance of crop production.


2022 ◽  
pp. 112-120
Author(s):  
Jeffrey P. Mitchell ◽  
Anil Shrestha ◽  
Lynn Epstein ◽  
Jeffery A. Dahlberg ◽  
Teamrat Ghezzehei ◽  
...  

To meet the requirements of California's Sustainable Groundwater Management Act, there is a critical need for crop production strategies with less reliance on irrigation from surface and groundwater sources. One strategy for improving agricultural water use efficiency is reducing tillage and maintaining residues on the soil surface. We evaluated high residue no-till versus standard tillage in the San Joaquin Valley with and without cover crops on the yields of two crops, garbanzo and sorghum, for 4 years. The no-till treatment had no primary or secondary tillage. Sorghum yields were similar in no-till and standard tillage systems while no-till garbanzo yields matched or exceeded those of standard tillage, depending on the year. Cover crops had no effect on crop yields. Soil cover was highest under the no-till with cover crop system, averaging 97% versus 5% for the standard tillage without cover crop system. Our results suggest that garbanzos and sorghum can be grown under no-till practices in the San Joaquin Valley without loss of yield.


2014 ◽  
Vol 30 (6) ◽  
pp. 550-562 ◽  
Author(s):  
S. O'Connell ◽  
J.M. Grossman ◽  
G.D. Hoyt ◽  
W. Shi ◽  
S. Bowen ◽  
...  

AbstractThe environmental benefits of cover cropping are widely recognized but there is a general consensus that adoption levels are still quite low among US farmers. A survey was developed and distributed to more than 200 farmers engaged in two sustainable farming organizations in NC and the surrounding region to determine their level of utilization, current practices and perceptions related to cover cropping. The majority of farms surveyed had diverse crop production, production areas <8 ha, and total gross farm incomes <US$50,000. Approximately one-third of the survey population had an organic production component. Eighty-nine percent of participants had a crop rotation plan and 79% of the total survey population utilized cover cropping. More than 25 different cool- and warm-season cover crops were reported. The statements that generated the strongest agreement about cover crop benefits were that cover crops: increase soil organic matter, decrease soil erosion, increase soil moisture, contribute nitrogen to subsequent cash crops, suppress weeds, provide beneficial insect habitat and break hard pans with their roots. Economic costs associated with cover cropping were not viewed as an obstacle to implementation. A factor analysis was conducted to identify underlying themes from a series of positive and negative statements about cover crops. Pre- and post-management challenges were able to explain the most variability (30%) among participant responses. Overall, participants indicated that the incorporation of residues was their greatest challenge and that a lack of equipment, especially for no-till systems, influenced their decisions about cover cropping. Farmers did not always appear to implement practices that would maximize potential benefits from cover crops.


2008 ◽  
Vol 18 (2) ◽  
pp. 215-226 ◽  
Author(s):  
K. Delate ◽  
C. Cambardella ◽  
A. McKern

With the continuing 20% growth rate in the organic industry, organic vegetable crop production has increased to 98,525 acres in the United States. The requirement for certified organic vegetable producers to implement a soil-building plan has led to the development of soil fertility systems based on combinations of organic fertilizers and cover crops. To determine optimal soil fertility combinations, conventional and organic bell pepper (Capsicum annuum) production was evaluated from 2001 to 2003 in Iowa, comparing combinations of two synthetic fertilizers and three compost-based organic fertilizers, and a cover crop treatment of hairy vetch (Vicia villosa) and rye (Secale cereale) in a strip-tilled or fully incorporated cover crop system. Organic pepper growth and yields equaled or surpassed conventional production when nitrogen (N) was provided at 56 or 112 kg·ha−1 from compost-based organic fertilizer. Soil analysis revealed higher N in plots where cover crops were tilled compared with strip-tilled plots, leading to recommendations for sidedressing N in strip-tilled organic pepper production. Increased incidence of disease was also detected in strip-tilled plots. Postharvest weight loss after 6 weeks in storage was similar in organic and conventional peppers. The addition of calcium and sulfur products in conventional or organic fertilizer regimes did not increase pepper production or postharvest storage potential. Despite application challenges, cover crops will remain as critical components of the organic farm plan for their soil-building benefits, but supplementation with approved N sources may be required for optimal pepper production. Organic growers should conduct their own tests of organic-compliant soil amendments to determine cost effectiveness and value for their site before large-scale application.


2018 ◽  
Vol 22 (3) ◽  
pp. 124
Author(s):  
Rijanto Hutasoit

Pasture legumes is a very high quality of forage. The limited land is the problem of its development. Integration with oil palm plantations is one of the potentials for its development. This study was aimed to investigate the productivity of several legumes (Arachis glabrata, Stylosanthes guianensis, Clitoria ternatea, and Chamaecrista rotundifolia) as forages and cover crop. The potential tests were conducted in oil palm area of 4608 m<sup>2</sup>, in a complete block design with four treatments (legume species) and three replications. Parameters observed were: Legum production, leaf/stem ratio, chemical composition of legume, concentration of N, P in the soil, microbes in the soil, leguminous digestibility and palm fruit production. Results showed that the highest legume production (DM) was (P&lt;0.05) in the species of Clitoria ternatea (16.15 tons ha-1year-1), the highest leaf/stem ratio (P&lt;0.05) was in the Arachis glabrata (2.09). The chemical composition (DM) did not differ (P&gt;0.05) ranged from 33.75 to 35.75%, the organic matter (OM) varied greatly (P&lt;0.05) the highets was in Clitoria ternatea. The highest Crude protein (P&lt;0.05) was in Clitoria ternatea 17.84%. NDF concentrations did not differ (P&gt;0.05). The lowest ADF concentration (P&lt;0.05) was in Chamaecrista rotundifolia. The concentration of N in the soil indicated that early year of activity was similar (average 0.10%), at the end of activity increased (P&lt;0.05) in treatment Stylosanthes guianensis (0.16%). The highest population of N-fixation bacteria of 1.76x109 and phosphate solvent of 9.8x105 were in the treatment of Clitoria ternatea. Production of fresh fruit bunches of the palm was relatively similar (P&gt;0.05) ranged from 16.52-19.21 tons ha<sup>-1</sup>year<sup>-1</sup>. It is concluded that Clitoria ternatea is the best species of legume tested as forage and cover crop in oil palm plantations.


2018 ◽  
Vol 35 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Alejandro Plastina ◽  
Fangge Liu ◽  
Fernando Miguez ◽  
Sarah Carlson

AbstractDespite being generally accepted as a promising conservation practice to reduce nitrate pollution and promote soil sustainability, cover crop adoption in Midwestern US agriculture is low. Based on focus groups, surveys and partial budgets, we calculated the annual net returns to cover crop use for farmers in Illinois, Iowa and Minnesota; and elicited farmers’ perceptions about the pros and cons of incorporating cover crops to their row cropping systems. The novelty of our methodology resides in comparing each farmer's practices in the portion of their cropping system with cover crops (typically small), against their practices in the other portion of their cropping system without cover crops. The resulting comparisons, accounting for farmer heterogeneity, are more robust than the typical effects calculated by comparing indicators across cover crop users and unrelated non-adopters. Our results highlight the complicated nature of integrating cover crops into the crop production system and show that cover crops affect whole farm profitability through several channels besides establishment and termination costs. Despite farmers’ positive perceptions about cover crops and the availability of cost-share programs, calculated annual net returns to cover crops use were negative for most participants.


Agriculture ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 172
Author(s):  
Merili Toom ◽  
Sirje Tamm ◽  
Liina Talgre ◽  
Ilmar Tamm ◽  
Ülle Tamm ◽  
...  

Using cover crops in fallow periods of crop production is an important management tool for reducing nitrate leaching and therefore improving nitrogen availability for subsequent crops. We estimated the short-term effect of five cover crop species on the yield of successive spring barley (Hordeum vulgare L.) for two years in Estonia. The cover crop species used in the study were winter rye (Secale cereale L.), winter turnip rape (Brassica rapa spp. oleifera L.), forage radish (Raphanus sativus L. var. longipinnatus), hairy vetch (Vicia villosa Roth), and berseem clover (Trifolium alexandrinum L.). The results indicated that out of the five tested cover crops, forage radish and hairy vetch increased the yield of subsequent spring barley, whereas the other cover crops had no effect on barley yield. All cover crop species had low C:N ratios (11–17), suggesting that nitrogen (N) was available for barley early in the spring.


2020 ◽  
Author(s):  
Bryan Runck ◽  
Colin K. Khoury ◽  
Patrick M. Ewing ◽  
Michael Kantar

AbstractCover cropping is considered a cornerstone practice in sustainable agriculture; however, little attention has been paid to the cover crop production supply chain. In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 3.8% (median 2.0%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.5% and 11.9%, respectively. The latter land requirement is comparable to the annual amount of maize grain lost to disease in the U.S. We highlight avenues for reducing these high land use costs.


2014 ◽  
Vol 153 (7) ◽  
pp. 1174-1185 ◽  
Author(s):  
J. RAMIREZ-GARCIA ◽  
J. L. GABRIEL ◽  
M. ALONSO-AYUSO ◽  
M. QUEMADA

SUMMARYThe introduction of cover crops in the intercrop period may provide a broad range of ecosystem services derived from the multiple functions they can perform, such as erosion control, recycling of nutrients or forage source. However, the achievement of these services in a particular agrosystem is not always required at the same time or to the same degree. Thus, species selection and definition of targeted objectives is critical when growing cover crops. The goal of the current work was to describe the traits that determine the suitability of five species (barley, rye, triticale, mustard and vetch) for cover cropping. A field trial was established during two seasons (October to April) in Madrid (central Spain). Ground cover and biomass were monitored at regular intervals during each growing season. A Gompertz model characterized ground cover until the decay observed after frosts, while biomass was fitted to Gompertz, logistic and linear-exponential equations. At the end of the experiment, carbon (C), nitrogen (N), and fibre (neutral detergent, acid and lignin) contents, and the N fixed by the legume were determined. The grasses reached the highest ground cover (83–99%) and biomass (1226–1928 g/m2) at the end of the experiment. With the highest C:N ratio (27–39) and dietary fibre (527–600 mg/g) and the lowest residue quality (~680 mg/g), grasses were suitable for erosion control, catch crop and fodder. The vetch presented the lowest N uptake (2·4 and 0·7 g N/m2) due to N fixation (9·8 and 1·6 g N/m2) and low biomass accumulation. The mustard presented high N uptake in the warm year and could act as a catch crop, but low fodder capability in both years. The thermal time before reaching 30% ground cover was a good indicator of early coverage species. Variable quantification allowed finding variability among the species and provided information for further decisions involving cover crop selection and management.


Sign in / Sign up

Export Citation Format

Share Document