scholarly journals Producing Horticultural Crops Using Hydroponic Tobacco Transplant Systems

1998 ◽  
Vol 8 (3) ◽  
pp. 392-395 ◽  
Author(s):  
Jonathan M. Frantz ◽  
Gregory E. Welbaum

Intensive, deep-batch, hydroponic systems that use float beds (FBs) are used extensively by the tobacco industry to produce transplants. FBs and a modified FB system with separate drying and flooding stages called ebb-and-flood (EF) beds were used to grow 12 diverse horticultural crops to maturity. Beds were filled with 570 L of water with 114 mg·L−1 N and 143 mg·L−1 K or 66 mg·L−1 N and 83 mg·L−1 K in 1994 and 1995, respectively. The EF beds were flooded for 6 hours, then drained for a 6-hour dry stage each 12 hours in 1994, and flooded for 1 hour and dried for 5 hours each 6-hour period in 1995 from May through August. Although both systems were suitable for producing Chinese water spinach (Ipomoea aquatica Forssk.—see footnote in Table 1), vegetable amaranth (Amaranthus tricolor L.), zinnia (Zinnia elegans Jacq.), and sweet basil (Ocimum basilicum L.), the EF system provided greater control over water availability and higher oxygen concentration in the root zone.

2021 ◽  
Author(s):  
Joann Whalen

Abstract Horticulture involves growing crops and ornamental plants in indoor and outdoor environments. Horticultural crops include food crops such as vegetables and fruits (including tree fruits, small fruits and grapes), as well as nut- and seed-bearing plants, herbs and spices. Many non-food crops are also managed by horticulturalists, including medicinal plants, tobacco, hemp, ornamental plants and flowers. Horticultural crops grow naturally in temperate, sub-tropical and tropical climates of the world, although many of these crops are sufficiently robust that they can be grown in any suitable controlled environment. In 2015, astronauts on the International Space Station grew, harvested and ate red romaine lettuce from their VEGGIE system (Vegetable Production System), which has successfully produced lettuce, Swiss chard, radishes, Chinese cabbage and peas in simulated space environments. The VEGGIE is equipped with adequate lighting, water and nutrients to grow vegetables, relying on the space station's cabin environment for temperature and pressure control, and as a source of carbon dioxide for plant growth (NASA, 2016). Most horticultural crops are planted in soil, although modern cultivation techniques include other media, such as peat-based soil, compost, and inert substrates such as rockwool. A suitable growing media must provide anchorage and stability for the plant roots, considering the diverse life histories of horticultural crops. For example, plants that complete their life cycle in one (annual) or two (biennial) growing seasons does not produce the extensive, deep root system of a woody perennial that lives for several decades. Without adequate anchorage, shrubs and trees are vulnerable to blow down in wind-storms if their roots are in loose, fluid soils or if the plant has a shallow root system on a rocky strata close to the surface. Wind rocking of a poorly-anchored seedling can lead to fine roots breakage and root system detachment from soil, causing the plant to tilt. Soil management refers to the way that soils are cultivated to support horticultural crop growth. Actively growing roots need oxygen for their metabolic function, so the soil must have a crumbly, porous structure that allows for gas exchange with the atmosphere. The porous soil structure permits oxygen diffusion to the root zone, and for carbon dioxide respired by the roots to leave the soil environment. Since plants roots are responsible for obtaining most of the water required for metabolic functions and cooling leaf surfaces, the soil must retain and supply water to the roots while avoiding waterlogging, which inhibits root functions. Soil also provides many essential plant nutrients for crop growth, such as nitrogen, phosphorus, potassium, calcium, magnesium, sulfur and micronutrients (boron, iron, copper, manganese, zinc, chloride, molybdenum and nickel). Nutrient uptake in the root system is facilitated by plant interactions with soil-dwelling microorganisms, both free-living and symbiotic, which are abundant in the root zone. Good soil management is essential to produce nutritious, high yielding food and to support the growth of non-food crops like herbaceous and woody ornamentals. Soil management specialists are responsible for maintaining the soil physical integrity, its chemical balance and soil microbial life necessary for growing horticultural crops.


2021 ◽  
Vol 5 (1) ◽  
pp. 7-11
Author(s):  
Tati Barus ◽  
Adrina Weisa ◽  
Renna Eliana Warjoto

Several technologies are evolving with the increasing agricultural product demand. The use of hydroponic systems appears more common, where the growing medium serves as a significant factor in determining plant growth, without available information on the use of sponges. This study is aimed at obtaining information on the potential of sponges as a hydroponic media in water spinach (<em>Ipomoea aquatica</em>), pak choi (<em>Brassica rapa</em>) and kale (<em>Brassica oleracea</em>). The method used was a completely randomized design with three replications and the treatment comprised of three growing media types, termed sponges, local and imported rockwool. The result showed an improvement in the growth of water spinach and pak choi in sponges, compared to local and imported rockwool. Furthermore, kale was known to develop more extensively on the entire media but varied insignificantly in kale.


2006 ◽  
Vol 32 (4) ◽  
pp. 307-321 ◽  
Author(s):  
John Clifford Sutton ◽  
Coralie Rachelle Sopher ◽  
Tony Nathaniel Owen-Going ◽  
Weizhong Liu ◽  
Bernard Grodzinski ◽  
...  

The etiology and epidemiology of Pythium root rot in hydroponically-grown crops are reviewed with emphasis on knowledge and concepts considered important for managing the disease in commercial greenhouses. Pythium root rot continually threatens the productivity of numerous kinds of crops in hydroponic systems around the world including cucumber, tomato, sweet pepper, spinach, lettuce, nasturtium, arugula, rose, and chrysanthemum. Principal causal agents include Pythium aphanidermatum, Pythium dissotocum, members of Pythium group F, and Pythium ultimum var. ultimum. Perspectives are given of sources of initial inoculum of Pythium spp. in hydroponic systems, of infection and colonization of roots by the pathogens, symptom development and inoculum production in host roots, and inoculum dispersal in nutrient solutions. Recent findings that a specific elicitor produced by P. aphanidermatum may trigger necrosis (browning) of the roots and the transition from biotrophic to necrotrophic infection are considered. Effects on root rot epidemics of host factors (disease susceptibility, phenological growth stage, root exudates and phenolic substances), the root environment (rooting media, concentrations of dissolved oxygen and phenolic substances in the nutrient solution, microbial communities and temperature) and human interferences (cropping practices and control measures) are reviewed. Recent findings on predisposition of roots to Pythium attack by environmental stress factors are highlighted. The commonly minor impact on epidemics of measures to disinfest nutrient solution as it recirculates outside the crop is contrasted with the impact of treatments that suppress Pythium in the roots and root zone of the crop. New discoveries that infection of roots by P. aphanidermatum markedly slows the increase in leaf area and whole-plant carbon gain without significant effect on the efficiency of photosynthesis per unit area of leaf are noted. The platform of knowledge and understanding of the etiology and epidemiology of root rot, and its effects on the physiology of the whole plant, are discussed in relation to new research directions and development of better practices to manage the disease in hydroponic crops. Focus is on methods and technologies for tracking Pythium and root rot, and on developing, integrating, and optimizing treatments to suppress the pathogen in the root zone and progress of root rot.


Soil Research ◽  
2016 ◽  
Vol 54 (3) ◽  
pp. 276 ◽  
Author(s):  
Giacomo Betti ◽  
Cameron D. Grant ◽  
Robert S. Murray ◽  
G. Jock Churchman

Clay delving in strongly texture-contrast soils brings up subsoil clay in clumps ranging from large clods to tiny aggregates depending on the equipment used and the extent of secondary cultivation. Clay delving usually increases crop yields but not universally; this has generated questions about best management practices. It was postulated that the size distribution of the subsoil clumps created by delving might influence soil-water availability (and hence crop yield) because, although the clay increases water retention in the root-zone, it can also cause poor soil aeration, high soil strength and greatly reduced hydraulic conductivity. We prepared laboratory mixtures of sand and clay-rich subsoil in amounts considered practical (10% and 20% by weight) and excessive (40% and 60% by weight) with different subsoil clod sizes (<2, 6, 20 and 45 mm), for which we measured water retention, soil resistance, and saturated hydraulic conductivity. We calculated soil water availability by traditional means (plant-available water, PAW) and by the integral water capacity (IWC). We found that PAW increased with subsoil clay, particularly when smaller aggregates were used (≤6 mm). However, when the potential restrictions on PAW were taken into account, the benefits of adding clay reached a peak at ~40%, beyond which IWC declined towards that of pure subsoil clay. Furthermore, the smaller the aggregates the less effective they were at increasing IWC, particularly in the practical range of application rates (<20% by weight). We conclude that excessive post-delving cultivation may not be warranted and may explain some of the variability found in crop yields after delving.


HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 543-546
Author(s):  
D.M. Glenn ◽  
S.S. Miller

The objectives of this 7-year study were to determine the effect of repeated root pruning and irrigation on peach (Prunus persica L. Batsch) tree growth and soil water use. Root pruning began in the year of planting. Peach trees trained to a freestanding “Y” were root-pruned at flowering for 4 years (1985 to 1988) and subsequently at flowering and monthly through July for 3 years (1989 to 1991). Irrigation was withheld or applied the full season or only during stage 3 of fruit growth on root-pruned and non-root-pruned trees. Root pruning limited soil water availability throughout most of the growing season when irrigation was withheld; however, when irrigation was applied, there was no difference in soil water availability. The root length density of peach roots was greatest in the 0 to 30-cm depth, was promoted by irrigation, and was reduced by root pruning in the 0 to 90-cm root zone. Full-season irrigation increased vegetative growth over the nonirrigated treatments. Root pruning had no effect on vegetative growth measured as fresh pruned material. The treatments had no effect on leaf nutrient content, except that root pruning reduced Zn in five consecutive years. Fruit yield was reduced 1 in 5 years by root pruning, and full-season irrigation reduced yield in 3 of 5 years. Repeated root pruning restricted the lateral spread of the root zone and the use of soil resources, yet on the deep soil of this site, restricting the lateral extent of the root zone did not reduce vegetative tree growth.


2021 ◽  
Vol 56 (4) ◽  
pp. 613-618
Author(s):  
Vera Amelia ◽  
Soaloon Sinaga ◽  
Andy Bhermana

The existence of water as a crop growth requirement is a prerequisite in tropical drylands. In addition, water balance, as an important part of climate change, is needed to be accessed under certain conditions. This study aimed to observe water availability and analyze water balance at drylands for farming planning purposes. The results of this study were then required to determine planting patterns and farming planning in the tropics, in which information related to hydrology is still lack. The Thornthwaite-Mather method approach was used in this study to analyze water balance in areas observed and. Because of its simplicity, this method can also be applied to areas with limited data. The water balance analysis that provides the information on water availability can be used as basic consideration for farming planning, especially at drylands in which water availability is a critical factor for farming activities. In tropical drylands, the cropping pattern of food crops – secondary crops – fallow – horticulture crops can be proposed within farming planning. Maize as a food crop can be planted for the early planting period in January, in which it can be harvested at the age of 80 days around March. In the following month, secondary crops such as soybeans can be planted and harvested at 135 days. Fallow periods during August and September, the lands cannot be optimally used because of water deficit. Entering the beginning of October, the land can be cultivated and prepared for the next crop, eggplant, as horticultural crops, harvested at 135 days in early February.


1999 ◽  
Vol 9 (1) ◽  
pp. 133a
Author(s):  
Jonathan M. Frantz ◽  
Gregory E. Welbaum ◽  
Zhengxing Shen ◽  
Ron Morse

“Float-bed” (FB) is a simple hydroponic system used by the tobacco industry for transplant production. “Ebb-and-flood” (EF) is a modified FB system with periodic draining of the bed to limit water availability and control plant growth. Field-bed cabbage (Brassica oleracea L. gp. Capitata) transplant production was compared with FB, EF, and overhead-irrigated plug-tray greenhouse systems. Plants were produced in May and June and transplanted in a field near Blacksburg, Va., in June and July of 1994 and 1995, respectively. Beds for FB and EF production consisted of galvanized metal troughs (3.3 × 0.8 × 0.3 m) lined with a double layer of 0.075-mm-thick black plastic film. In 1994, both EF and FB seedlings were not hardened before transplanting, were severely stressed after transplanting, and had higher seedling mortality compared with plants from other systems. Plug-tray transplants showed the greatest increase in leaf area following transplanting and matured earlier than seedlings produced in other systems. In 1995, EF- and FB-grown cabbage plants were hardened by withholding water before transplanting, and seedlings had greater fresh mass and leaf area than plug-tray or field-bed seedlings 3.5 weeks after transplanting. Less succulent cabbage transplants were grown in EF and FB systems containing 66 mg·L-1 N (40% by nitrate) and 83 mg·L-1 K. Compared with the FB system, the EF system allowed control of water availability, which slowed plant growth, and increased oxygen concentration in the root zone. Both EF and FB systems are suitable for cabbage transplant production.


2016 ◽  
Vol 227 (10) ◽  
Author(s):  
Chiara Ferronato ◽  
Serena Carbone ◽  
Gilmo Vianello ◽  
Livia Vittori Antisari

2019 ◽  
Vol 37 (1) ◽  
pp. 101-105 ◽  
Author(s):  
Priscila F de Souza ◽  
Marcelo Borghezan ◽  
Julia Zappelini ◽  
Lara R de Carvalho ◽  
Joseph Ree ◽  
...  

ABSTRACT Conventional soil and hydroponic growing systems have inherent differences in water and nutritional availability. These differences may affect plant physiological development and biochemistry. The objective of this study was to evaluate lettuce (Lactica sativa) cv. ‘Crocantela’development in either a hydroponic system or in soil through analyses of vegetative growth; chlorophyll abundance; and sugar and starch content. We evaluated the dry mass (DM), fresh mass (FM), number of leaves (LN), stomatal density and contents of chlorophyll, carotenoids, sugars and starch. Due to the improved nutritional conditions, especially in relation to macronutrients, plants grown in hydroponic system presented significant differences in chlorophyll a (0.4481 mg/g), b (0.1233 mg/g) and total chlorophyll content (0.5714 mg/g), as well as greater biomass when compared to plants cultivated in pots (FM: 342.69 g; DM: 21.13 g; NL: 17.75 g). The lower water availability for plants cultivated in pots influenced the increase in carbohydrate concentration and stomatal density in leaves (adaxial: 45.83 stomates/mm2; abaxial: 64.75 stomates/mm2) of lettuce plants.


Sign in / Sign up

Export Citation Format

Share Document