scholarly journals Effect of Bacteria on Scape Bending in Cut Gerbera jamesonii Flowers

1994 ◽  
Vol 119 (3) ◽  
pp. 568-571 ◽  
Author(s):  
Wouter G. van Doorn ◽  
Yke de Witte

Including bacteria in the vase water of cut Gerbera jamesonii Bolus flowers resulted in an increase in scape curvature depending on the concentration of bacteria in the water, cultivar, and season. In the summer, a strain of Pseudomonas aeruginosa or a mixed population of bacterial species, all isolated from the vase water of cut gerbera flowers, resulted in curvature of >90° in `Liesbeth' at 108 cfu/ml and in `Mickey' at 1010 cfu/ml. In winter, the lowest bacterial concentrations that resulted in such bending were 106 and 108 cfu/ml, respectively. `Mickey' showed bending at a lower water potential than `Liesbeth'. Comparison between these results and the bacterial counts in vase water and water at retail shops indicates that frequently observed scape bending is at least partly due to bacteria.

2015 ◽  
Vol 17 (3) ◽  
pp. 565-573 ◽  

<div> <p>Petroleum products are used in different forms in auto-mechanic workshops every day. Spent motor oil disposed-off improperly contains potentially toxic substances which can seep into the water tables and contaminate ground water. This study involved isolation and screening of bacterial species capable of utilizing hydrocarbons from three auto-mechanic workshops in Abeokuta, Ogun State. Total Heterotrophic Bacterial Counts ranged from 1.03 &times; 10<sup>6</sup> to 2.81 &times; 10<sup>6 </sup>CFU/g. Total Oil Degrading Bacterial Counts varied between 4.0 &times; 10<sup>5</sup> and 2.01 &times; 10<sup>6</sup> CFU/g while Surface Active Bacterial Counts were from 1.2 &times; 10<sup>4</sup> to 2.76 &times; 10<sup>5</sup> CFU/g. Twenty-four bacteria species capable of utilizing petroleum as a carbon source were isolated from various contaminated soils using enrichment technique. Isolated bacteria include: <em>Bacillus </em>spp., <em>Pseudomonas aeruginosa,</em> <em>Micrococcus </em>spp., <em>Proteus mirabilis</em>, <em>Proteus vulgaris </em>and<em> Enterobacter </em>spp. Redox indicator 2, 6-dichlorophenol indophenol (DCPIP) was used to screen for efficient hydrocarbon (Kerosene, Premium Motor Spirit, and Engine oil) degradation by bacteria. Degradation efficiency was measured by optical density at 600 nm. <em>Micrococcus </em>spp., <em>Proteus mirabilis</em>, and <em>Pseudomonas aeruginosa</em> were found to be the best isolates growing on majority of hydrocarbons due to their high utilization value when growing on the hydrocarbons tested.</p> </div> <p>&nbsp;</p>


2021 ◽  
Author(s):  
Natalie Lindgren ◽  
Lea Novak ◽  
Benjamin C. Hunt ◽  
Melissa S. McDaniel ◽  
W. Edward Swords

Patients with cystic fibrosis (CF) experience lifelong respiratory infections which are a significant cause of morbidity and mortality. These infections are polymicrobial in nature, and the predominant bacterial species undergo a predictable series of changes as patients age. Young patients have populations dominated by opportunists that are typically found within the microbiome of the human nasopharynx, such as nontypeable Haemophilus influenzae (NTHi); these are eventually supplanted and the population within the CF lung is later dominated by pathogens such as Pseudomonas aeruginosa ( Pa ). In this study, we investigated how initial colonization with NTHi impacts colonization and persistence of Pa in the respiratory tract. Analysis of polymicrobial biofilms in vitro by confocal microscopy revealed that NTHi promoted greater levels of Pa biofilm volume and diffusion. However, sequential respiratory infection of mice with NTHi followed by Pa resulted in significantly lower Pa as compared to infection with Pa alone. Coinfected mice also had reduced airway tissue damage and lower levels of inflammatory cytokines as compared with Pa infected mice. Similar results were observed after instillation of heat-inactivated NTHi bacteria or purified NTHi lipooligosaccharide (LOS) endotoxin prior to Pa introduction. Based on these results, we conclude that NTHi significantly reduces susceptibility to subsequent Pa infection, most likely due to priming of host innate immunity rather than a direct competitive interaction between species. These findings have potential significance with regard to therapeutic management of early life infections in patients with CF.


2007 ◽  
Vol 73 (21) ◽  
pp. 6864-6869 ◽  
Author(s):  
Diana Axelsson-Olsson ◽  
Patrik Ellstr�m ◽  
Jonas Waldenstr�m ◽  
Paul D. Haemig ◽  
Lars Brudin ◽  
...  

ABSTRACT In this study, we present a novel method to isolate and enrich low concentrations of Campylobacter pathogens. This method, Acanthamoeba-Campylobacter coculture (ACC), is based on the intracellular survival and multiplication of Campylobacter species in the free-living protozoan Acanthamoeba polyphaga. Four of the Campylobacter species relevant to humans and livestock, Campylobacter jejuni, C. coli, C. lari, and C. hyointestinalis, were effectively enriched by the coculture method, with growth rates comparable to those observed in other Campylobacter enrichment media. Studying six strains of C. jejuni isolated from different sources, we found that all of the strains could be enriched from an inoculum of fewer than 10 bacteria. The sensitivity of the ACC method was not negatively affected by the use of Campylobacter-selective antibiotics in the culture medium, but these were effective in suppressing the growth of seven different bacterial species added at a concentration of 104 CFU/ml of each species as deliberate contamination. The ACC method has advantages over other enrichment methods as it is not dependent on a microaerobic milieu and does not require the use of blood or other oxygen-quenching agents. Our study found the ACC method to be a promising tool for the enrichment of Campylobacter species, particularly from water samples with low bacterial concentrations.


Author(s):  
Jasmina Cilerdzic ◽  
Mirjana Stajic ◽  
Jelena Vukojevic

Even though numerous lichen species possess significant medical potentials they are still unexplored, and particularly species and strains originating from Serbia. Therefore, the aim of this study was to evaluate the antioxidative and antimicrobial potential of ethanol extracts of Parmelia saxatilis and Pseudoevernia furfuracea collected in Serbia. The tested extracts were good scavengers of DPPH radicals, with capacities ranging from 14.76% to 79.76% in P. saxatilis and from 21.39% to 90.04% in P. furfuracea. In P. saxatilis level of DPPH? neutralisation was highly correlated with phenol content (r2 = 0.9981) and in P. furfuracea with amount of total flavonoides (r2 = 0.9641). The extract of P. furfuracea inhibited the growth of all tested microorganisms with exception of Aspergillus flavus, while P. saxatilis extract affected only growth of bacterial species. Among tested microorganisms, Staphylococcus aureus and Klebsiella pneumoniae were the most sensitive, while Enterococcus faecalis, Pseudomonas aeruginosa as well as micromycetes were the least sensitive to tested extracts. Because of these potentials and the fact that their long term usage does not have any negative side effects on organism and development of microbial resistance, the extracts could be included in conventional therapy.


2021 ◽  
Vol 322 ◽  
pp. 02012
Author(s):  
Septyan Andriyanto ◽  
Hessy Novita ◽  
Tuti Sumiati ◽  
Taukhid

The disease is the main agent that causes mortality of fish, especially during seed stages. The research aimed to find out bacteria and parasitic speciesin glass eel, Anguilla spp. Bacterial identification was carried out by a biochemical method. The prevalence of bacterial species was calculated using the El-Gohary et al. (2020) formula, while the results of bacterial identification from glass eel were Aeromonas spp., Vibrio spp., Enterococcus spp., Staphylococcus spp., Planococcus spp., Lactobacillus spp., Listeria spp., Citrbacterfreundii, Neisseria spp., Pseudomonas aeruginosa, Kurthia spp., Streptococcus spp., and Corynebacterium spp. It was found that the five highest prevalence rate was for Listeria spp. (39.64%), followed by Aeromonas spp. (26.13%), Staphylococcus spp. (16.22%), Corynebacterium spp. (5.41%), Lactobacillus spp. (2.70%), and the lowest prevalence rate was Streptococcus spp. (0.90%). The type of parasitic pathogen obtained was Trichodina spp. (2,70%), Dactylogyrus spp. (2,70%) and Gyrodactylus spp. (2,70%). Bacterial and parasites identified in glass eels need further verification on the epizootiology characteristic of each pathogenic agent.


2016 ◽  
Vol 26 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Ka Man Lai ◽  
Ka Man Lee ◽  
William Yu

The purpose of this study is to explore the environmental quality and hygiene in crowded living environments, subdivided units in Hong Kong. Subdivided units are an emerging form of housing environment for the urban poor. It is hypothesised that subdivided unit residents have a higher risk of exposure to poor hygiene conditions but no measurement has ever been taken to test this hypothesis. Twenty questionnaires and environmental assessments were conducted. Dominant bacterial species were identified as Micrococcus luteus and Staphylococcus spp., and the microbial counts were correlated with building, occupants and environmental parameters. Driven by the high bacterial counts and poor hygiene observation, eight subdivided units were selected for endotoxin, glucan and allergen analysis in bed and floor dust. Total airborne bacterial counts and endotoxin and glucan in dust were found at very high levels in some subdivided units, while unexpectedly, the allergen and mould levels were low. In crowded environments the skin bacteria may mislead the environmental and atmospheric bacterial contamination. Outdoor microbial pollution and deteriorated building conditions can be the main source of indoor contamination. ‘Good’ or ‘Excellent’ class of bacterial counts satisfying the Indoor Air Quality Objective does not guarantee a low endotoxin and glucan level.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Tianyuan Cao ◽  
Jonathan V. Sweedler ◽  
Paul W. Bohn ◽  
Joshua D. Shrout

ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen important to diseases such as cystic fibrosis. P. aeruginosa has multiple quorum-sensing (QS) systems, one of which utilizes the signaling molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). Here, we use hyperspectral Raman imaging to elucidate the spatiotemporal PQS distributions that determine how P. aeruginosa regulates surface colonization and its response to both metabolic stress and competition from other bacterial strains. These chemical imaging experiments illustrate the strong link between environmental challenges, such as metabolic stress caused by nutritional limitations or the presence of another bacterial species, and PQS signaling. Metabolic stress elicits a complex response in which limited nutrients induce the bacteria to produce PQS earlier, but the bacteria may also pause PQS production entirely if the nutrient concentration is too low. Separately, coculturing P. aeruginosa in the proximity of another bacterial species, or its culture supernatant, results in earlier production of PQS. However, these differences in PQS appearance are not observed for all alkyl quinolones (AQs) measured; the spatiotemporal response of 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) is highly uniform for most conditions. These insights on the spatiotemporal distributions of quinolones provide additional perspective on the behavior of P. aeruginosa in response to different environmental cues. IMPORTANCE Alkyl quinolones (AQs), including Pseudomonas quinolone signal (PQS), made by the opportunistic pathogen Pseudomonas aeruginosa have been associated with both population density and stress. The regulation of AQ production is known to be complex, and the stimuli that modulate AQ responses are not fully clear. Here, we have used hyperspectral Raman chemical imaging to examine the temporal and spatial profiles of AQs exhibited by P. aeruginosa under several potentially stressful conditions. We found that metabolic stress, effected by carbon limitation, or competition stress, effected by proximity to other species, resulted in accelerated PQS production. This competition effect did not require cell-to-cell interaction, as evidenced by the fact that the addition of supernatants from either Escherichia coli or Staphylococcus aureus led to early appearance of PQS. Lastly, the fact that these modulations were observed for PQS but not for all AQs suggests a high level of complexity in AQ regulation that remains to be discerned.


2017 ◽  
Vol 5 (44) ◽  
Author(s):  
Yohei Kumagai ◽  
Susumu Yoshizawa ◽  
Keiji Nakamura ◽  
Yoshitoshi Ogura ◽  
Tetsuya Hayashi ◽  
...  

ABSTRACT Pseudomonas aeruginosa is one of the most common model bacterial species, and genomes of hundreds of strains of this species have been sequenced to date. However, currently there is only one available genome of an oceanic isolate. Here, we report two complete and six draft genome sequences of P. aeruginosa isolates from the open ocean.


2015 ◽  
Vol 59 (6) ◽  
pp. 3246-3251 ◽  
Author(s):  
Jerónimo Rodríguez-Beltrán ◽  
Gabriel Cabot ◽  
Estela Ynés Valencia ◽  
Coloma Costas ◽  
German Bou ◽  
...  

ABSTRACTThe modulating effect ofN-acetylcysteine (NAC) on the activity of different antibiotics has been studied inPseudomonas aeruginosa. Our results demonstrate that, in contrast to previous reports, only the activity of imipenem is clearly affected by NAC. MIC and checkerboard determinations indicate that the NAC-based modulation of imipenem activity is dependent mainly on OprD. SDS-PAGE of outer membrane proteins (OMPs) after NAC treatments demonstrates that NAC does not modify the expression of OprD, suggesting that NAC competitively inhibits the uptake of imipenem through OprD. Similar effects on imipenem activity were obtained withP. aeruginosaclinical isolates. Our results indicate that imipenem-susceptibleP. aeruginosastrains become resistant upon simultaneous treatment with NAC and imipenem. Moreover, the generality of the observed effects of NAC on antibiotic activity was assessed with two additional bacterial species,Escherichia coliandAcinetobacter baumannii. Caution should be taken during treatments, as the activity of imipenem may be modified by physiologically attainable concentrations of NAC, particularly during intravenous and nebulized regimes.


Sign in / Sign up

Export Citation Format

Share Document