scholarly journals Screening of hydrocarbonoclastic bacteria using redox indicator 2, 6-dichlorophenol indophenol.

2015 ◽  
Vol 17 (3) ◽  
pp. 565-573 ◽  

<div> <p>Petroleum products are used in different forms in auto-mechanic workshops every day. Spent motor oil disposed-off improperly contains potentially toxic substances which can seep into the water tables and contaminate ground water. This study involved isolation and screening of bacterial species capable of utilizing hydrocarbons from three auto-mechanic workshops in Abeokuta, Ogun State. Total Heterotrophic Bacterial Counts ranged from 1.03 &times; 10<sup>6</sup> to 2.81 &times; 10<sup>6 </sup>CFU/g. Total Oil Degrading Bacterial Counts varied between 4.0 &times; 10<sup>5</sup> and 2.01 &times; 10<sup>6</sup> CFU/g while Surface Active Bacterial Counts were from 1.2 &times; 10<sup>4</sup> to 2.76 &times; 10<sup>5</sup> CFU/g. Twenty-four bacteria species capable of utilizing petroleum as a carbon source were isolated from various contaminated soils using enrichment technique. Isolated bacteria include: <em>Bacillus </em>spp., <em>Pseudomonas aeruginosa,</em> <em>Micrococcus </em>spp., <em>Proteus mirabilis</em>, <em>Proteus vulgaris </em>and<em> Enterobacter </em>spp. Redox indicator 2, 6-dichlorophenol indophenol (DCPIP) was used to screen for efficient hydrocarbon (Kerosene, Premium Motor Spirit, and Engine oil) degradation by bacteria. Degradation efficiency was measured by optical density at 600 nm. <em>Micrococcus </em>spp., <em>Proteus mirabilis</em>, and <em>Pseudomonas aeruginosa</em> were found to be the best isolates growing on majority of hydrocarbons due to their high utilization value when growing on the hydrocarbons tested.</p> </div> <p>&nbsp;</p>

2015 ◽  
Vol 3 (2) ◽  
pp. 261-266
Author(s):  
Govind Kumar ◽  
Rajesh Kumar ◽  
Anita Sharma

Contamination of soil / water resources by petroleum products poses severe threats to underground water and soil quality. In the present study biosurfactant producing bacterial cultures were used to degrade petrol engine oil under in situ conditions in the plant rhizosphere system. Two bacterial isolates used in this study were recovered from Haldia oil refinery sites and identified as Pseudomonas aeruginosa (JX100389) and P. moraviensis (JX149542). Application of consortium C2, (Pseudomonas aeruginosa and P. moraviensis) degraded 79.02 % petrol engine oil @ 2% in the soil planted with mustard (Brassica juncea var. Kranti) crop after 120 days. GC-MS of biodegraded fuel showed the presence of new product like hexadecanoic acid 2, oxo-methyl ester.Int J Appl Sci Biotechnol, Vol 3(2): 261-266 DOI: http://dx.doi.org/10.3126/ijasbt.v3i2.12475 


2019 ◽  
Vol 7 (5) ◽  
pp. 13-22 ◽  
Author(s):  
Hilary Uguru ◽  
Akpokodje, O. I.

This study was carried out to investigate the effect of compost manure and organic soap on hydrocarbon degradation in petroleum products contaminated soil. 10 kg of top soil collected at a depth of 0-20 cm, air dried and sieved, were poured into plastic containers. The soil samples were was pounded with 1 L of spent engine oil, 1 L of kerosene, 1 L of petrol and 1 L of diesel daily for five days. The containers were placed under natural environmental conditions for three weeks to enable full acclimatization of the petroleum products with the soil. A completely randomized design comprising T1 (Polluted soil without treatment ‘control’); T2 (10 kg contaminated soil + 500 g organic soap); T3 (10 kg contaminated soil + 500 g compost manure); and T4 (10 kg contaminated soil + 500 g compost manure + 500 g organic soap) was used for this study. Some physical characteristics (soil porosity and specific gravity) and Total Hydrocarbon Content (THC) of the soil samples were tested for, after the full acclimatization of the soil samples, and at the end of the 10 week experimental period, in accordance with standard methods. Results of the study showed that addition of the compost manure and organic soap the contaminated soil samples significantly (p ≤0.05) degraded the THC, and improved the soil physical characteristics. The result showed that the combination of compost manure and organic soap gave the best remediation result (from 957.21 mg/kg to 154.36 mg/kg), followed by organic soap (from 957.21mg/kg to 203.61 mg/kg), and then compost manure (from 957.21 mg/kg to 262.03 mg/kg). At the end of the experimental period, vegetative growth was observed in the treated soil samples; whereas,  in the control soil samples vegetative growth was absent. Results obtained from this study have shown that amending petroleum products contaminated soils with compost manure and organic soap will enhance remediation of petroleum products contaminated sites.


2018 ◽  
Vol 200 (23) ◽  
Author(s):  
Evelyn Sun ◽  
Sijie Liu ◽  
Robert E. W. Hancock

ABSTRACTBacterial rapid surfing motility is a novel surface adaptation ofPseudomonas aeruginosain the presence of the glycoprotein mucin. Here, we show that other Gram-negative motile bacterial species, includingEscherichia coli,Salmonella enterica,Vibrio harveyi,Enterobacter cloacae, andProteus mirabilis, also exhibit the physical characteristics of surfing on the surface of agar plates containing 0.4% mucin, where surfing motility was generally more rapid and less dependent on medium viscosity than was swimming motility. As previously observed inPseudomonas aeruginosa, all surfing species exhibited some level of broad-spectrum adaptive resistance, although the antibiotics to which they demonstrated surfing-mediated resistance differed. Surfing motility inP. aeruginosawas found to be dependent on the quorum-sensing systems of this organism; however, this aspect was not conserved in other tested bacterial species, includingV. harveyiandS. enterica, as demonstrated by assaying specific quorum-sensing mutants. Thus, rapid surfing motility is a complex surface growth adaptation that is conserved in several motile bacteria, involves flagella, and leads to diverse broad-spectrum antibiotic resistance, but it is distinct in terms of dependence on quorum sensing.IMPORTANCEThis study showed for the first time that surfing motility, a novel form of surface motility first discovered inPseudomonas aeruginosaunder artificial cystic fibrosis conditions, including the presence of high mucin content, is conserved in other motile bacterial species known to be mucosa-associated, includingEscherichia coli,Salmonella enterica, andProteus mirabilis. Here, we demonstrated that key characteristics of surfing, including the ability to adapt to various viscous environments and multidrug adaptive resistance, are also conserved. Using mutagenesis assays, we also identified the importance of all three known quorum-sensing systems, Las, Rhl, and Pqs, inP. aeruginosain regulating surfing motility, and we also observed a conserved dependence of surfing on flagella in certain species.


1994 ◽  
Vol 119 (3) ◽  
pp. 568-571 ◽  
Author(s):  
Wouter G. van Doorn ◽  
Yke de Witte

Including bacteria in the vase water of cut Gerbera jamesonii Bolus flowers resulted in an increase in scape curvature depending on the concentration of bacteria in the water, cultivar, and season. In the summer, a strain of Pseudomonas aeruginosa or a mixed population of bacterial species, all isolated from the vase water of cut gerbera flowers, resulted in curvature of >90° in `Liesbeth' at 108 cfu/ml and in `Mickey' at 1010 cfu/ml. In winter, the lowest bacterial concentrations that resulted in such bending were 106 and 108 cfu/ml, respectively. `Mickey' showed bending at a lower water potential than `Liesbeth'. Comparison between these results and the bacterial counts in vase water and water at retail shops indicates that frequently observed scape bending is at least partly due to bacteria.


Author(s):  
Muh'd A. J. ◽  
Sa'adatu A.Y. ◽  
Surayya M. M. ◽  
Sa'adatu M. I. ◽  
Nafisa B. ◽  
...  

Oil is most widely distributed source of energy in the world and large-scaled environmental pollutant. Oil, oil products, and oil containing industrial waste pollution is ranked second place after radioactive pollution on account of their harmful action to ecosystems. Contamination of soil by organic chemicals (mostly hydrocarbons) is prevalent in oil producing and industrialized countries of the world. Biodegradation, a strategy that uses biological means (i.e microbes) to degrade, stabilize and remove soil contaminants is an alternative green technology remediation of hydrocarbon contaminated soil. This study was carried out to isolate and screen Bacteria capable of degrading used engine oil from oil contaminated site. Soil samples were collected from oil contaminated site. Bacterial species were isolated from the collected soil samples by serial dilution and agar methods. Different bacterial species were isolated but only four were oil degrading isolates. The identity of the various genera of bacterial contaminants were determined by a combination of cultural, morphological as well as preliminary biochemical characteristics of the isolates. The four oil degrading bacteria (AJ1, AJ2, AJ3 and AJ4) were preliminarily identified as Bacillus cereus, Pseudomonas aeruginosa, Bacillus subtillis and Micrococcus spp respectively. The degradation ability of the bacterial isolates was screened and maximum degradation was recorded by AJ 5 (Mixed culture) with 66.9 %, followed by Bacillus cereus (50.3 %), Bacillus subtilis (44 %), Pseudomonas aeruginosa (37.9 %) and the least was seen in Micrococcus spp (35.3 %). These findings revealed that some bacteria species are capable of utilizing the oil and used it as sole source of carbon and energy and the mixed consortia of the bacteria have rapid degradation ability. Biological degradation of hydrocarbon contaminated soil offers a better and more environmentally friendly technique that if properly explored can bring our environment into a better place for both plant and animal.


Author(s):  
Mohammad Farooq Bhutta ◽  
Ashfaq Hussain ◽  
Salman Baig ◽  
Asad Ullah ◽  
Sarwath Fatimee ◽  
...  

Aim: To find out the frequency of different bacterial species and their antibiogram among the patients of chronic suppurative otitis media. Study Design: Descriptivecross-sectional. Place and Duration of Study: The study was conducted at the ENT department of Bahawal Victoria hospital between July to December 2020. Methodology: About 50 patients presented with unilateral or bilateral ear discharge and diagnosed as a case of chronic suppurative otitis media were included in the study. The disk diffusion method was used on Mueller-Hinton Agar to detect antimicrobial susceptibility. Multipledrugs were tested for checking antimicrobial susceptibility. The data were analyzed by using Statistical Package for the Social Sciences (SPSS) version 20. Results: The mean age of the study participants was 13.89 ± 12.37 years. The majority of participants were froma younger age group i.e. less than10 years of age with female predominance. It had been found that the majority of cases (51%) were having Staphylococcus aureus infestation followed by Pseudomonas aeruginosa, Escherichia coli and very few with Proteus mirabilis. On the other hand, multiple drugs were tested to find out the antimicrobial susceptibility among the cases of chronic otitis media and the results reported that all the bacterial species were susceptible to Ceftriaxone while the other antibiotics were havinga variable response for different strains of bacteria. Conclusion: Results concluded that the Staphylococcus aureus was the most common organism followed by Pseudomonas aeruginosa, Escherichia coli and very few with Proteus mirabilis. It is important to identify the pathogenic organism and its sensitivity pattern before prescribing any antibiotic.


2021 ◽  
Author(s):  
Natalie Lindgren ◽  
Lea Novak ◽  
Benjamin C. Hunt ◽  
Melissa S. McDaniel ◽  
W. Edward Swords

Patients with cystic fibrosis (CF) experience lifelong respiratory infections which are a significant cause of morbidity and mortality. These infections are polymicrobial in nature, and the predominant bacterial species undergo a predictable series of changes as patients age. Young patients have populations dominated by opportunists that are typically found within the microbiome of the human nasopharynx, such as nontypeable Haemophilus influenzae (NTHi); these are eventually supplanted and the population within the CF lung is later dominated by pathogens such as Pseudomonas aeruginosa ( Pa ). In this study, we investigated how initial colonization with NTHi impacts colonization and persistence of Pa in the respiratory tract. Analysis of polymicrobial biofilms in vitro by confocal microscopy revealed that NTHi promoted greater levels of Pa biofilm volume and diffusion. However, sequential respiratory infection of mice with NTHi followed by Pa resulted in significantly lower Pa as compared to infection with Pa alone. Coinfected mice also had reduced airway tissue damage and lower levels of inflammatory cytokines as compared with Pa infected mice. Similar results were observed after instillation of heat-inactivated NTHi bacteria or purified NTHi lipooligosaccharide (LOS) endotoxin prior to Pa introduction. Based on these results, we conclude that NTHi significantly reduces susceptibility to subsequent Pa infection, most likely due to priming of host innate immunity rather than a direct competitive interaction between species. These findings have potential significance with regard to therapeutic management of early life infections in patients with CF.


Sign in / Sign up

Export Citation Format

Share Document