scholarly journals The Effect of Irrigation Method, Water-soluble Fertilization, Replant Nutrient Charge, and Surface Evaporation on Early Vegetative and Root Growth of Poinsettia

1995 ◽  
Vol 120 (2) ◽  
pp. 163-169 ◽  
Author(s):  
William R. Argo ◽  
John A. Biernbaum

Rooted cuttings of `Gutbier V-l 4 Glory poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) were grown in 15-cm pots using two irrigation methods, two water-soluble fertilization schedules, and two preplant root-media fertilization rates. No difference in shoot growth occurred with either top watering with 33% leaching or subirrigation. The top 2.5 cm (top layer) contained nutrient concentrations up to 10 times higher than those measured in the remaining root medium (root zone) of the same pot with both irrigation methods. Constant applications of28 mol N/m3 water-soluble fertilizer (WSF) limited shoot and root growth as measured at 3 and 8 weeks compared to a weekly increase in the concentration of WSF from 0 to 28 mol N/m3 in 7 mol N/m3 increments over a S-week period. The additional incorporation of 0.27 kg·m-3 mineral N to Metro Mix 510 before planting had no effect on fresh- or dry-weight accumulation. When the root-medium surface was covered by an evaporation barrier, 46% less water and 41% less N fertilizer were applied to plants of similar size, and higher root-zone nutrient levels were maintained over the 8 weeks of the experiment. The evaporation barrier had the greatest effect on increasing root-zone nutrient concentrations and reducing the growth of subirrigated plants.

HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 535-538
Author(s):  
William R. Argo ◽  
John A. Biernbaum

`V-14 Glory' poinsettias (Euphorbia pulcherrima Willd. ex Klotzsch) were grown in five root media using top watering with 20% leaching for 112 days. Root media with a high water-holding capacity required fewer irrigations and fertilizer applications than those with a lower water-holding capacity. However, similar amounts of water were applied and leached with both types of root media over the entire experiment. The reduction in the number of fertilizations was compensated for by an increase in the amount (volume) of fertilizer applied at any one irrigation. The greatest differences in root-media nutrient concentrations were found between the top 2.5 cm (top layer) and the remaining root medium within the same pot (root zone). After 58 days, when fertilization with water-soluble fertilizer (28.6N–0P–8.5K mol·m–3) was stopped, nutrient concentrations in the top layer were 3 to 6 times greater than those in the root zone for all five root media tested. For the final 42 days of the experiment after fertilization was stopped, nutrient concentrations in the root zone remained at acceptable levels in all root media. The nutrients contained in the top layer may have provided a source of nutrients for the root zone once fertilization was stopped.


1994 ◽  
Vol 119 (6) ◽  
pp. 1151-1156 ◽  
Author(s):  
William R. Argo ◽  
John A. Biernbaum

Subirrigated Easter lilies were grown in five commercially formulated root media using one water-soluble fertilizer applied independently to each medium based on water-holding capacity and water loss. The number of irrigations ranged from 12 to 20 and the amount of applied water ranged from 5.3 to 6.8 liters for the uncovered media treatments. When the root-medium surface was covered with an evaporation barrier, the average amount of applied water was reduced by 35% compared to the uncovered media. The largest effect on root media pH was between uncovered and covered media due to the reduced amount of water applied. Similar macronutrient concentrations were measured in the five media during the experiment with few exceptions. The greatest differences in nutrient concentrations were found within the pots. The top 2.5 cm (top layer) contained nutrient concentrations up to 10 times higher than those measured in the remaining root medium (root zone) of the same pot. Covering the root-medium surface with an evaporation barrier reduced the stratification of fertilizer salts. Root-zone soluble salt concentrations of plants in the covered pots were similar to those of uncovered plants even though 36% less fertilizer was applied to the covered plants.


HortScience ◽  
1994 ◽  
Vol 29 (8) ◽  
pp. 858-864 ◽  
Author(s):  
John M. Dole ◽  
Janet C. Cole ◽  
Sharon L. von Broembsen

`Gutbier V-14 Glory' poinsettias (Euphorbia pulcherrima Willd. Ex. Klotzsch) grown with ebb-and-flow irrigation used the least amount of water and produced the least runoff, and plants grown with capillary mats used the greatest amount of water and produced the most runoff, compared to microtube and hand-watering systems. The maximum amount of water retained by the pots and media was greatest for the microtube and ebb-and-flow systems and became progressively lower for the hand-watering and capillary mat systems. The media and leachate electrical conductivity from plants grown with subirrigation systems was higher than those grown with top irrigation. For the two top-irrigation systems (microtube and hand-watering), plants grown with 250 mg N/liter from a 20N-4.4P-16.6K water-soluble fertilizer had greater leaf, stem, and total dry weights than those grown with 175 mg N/liter. The two subirrigation systems (ebb-and-flow and capillary mat) produced plants that were taller and had greater leaf, stem, and total dry weights when grown with 175 than with 250 mg N/liter. The higher fertilizer concentration led to increased N, P, Fe, and Mn concentration in the foliage. Nitrogen concentration was higher in top-irrigated plants than in subirrigated plants. The ebb-and-flow system produced the greatest total dry weight per liter of water applied and per liter of runoff; capillary mat watering was the least efficient in regard to water applied and runoff.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 524a-524 ◽  
Author(s):  
Kent Cushman ◽  
Thomas Horgan

Tomato was grown in Fall 1997 with swine effluent or commercial soluble fertilizer in a plasticulture production system. Four cultivars, `Mountain Delight', `Celebrity', `Equinox', and `Sunbeam', were transplanted to raised beds with plastic mulch and drip irrigation. Preplant fertilizer was not applied. Effluent from the Wiley L. Bean Swine Demonstration Unit's secondary lagoon was filtered through in-line screen filters and applied directly to the plants through the irrigation system. Toward the end of each application, sodium hypochlorite was injected in the line to achieve a free chlorine concentration of ≈1%. Clogging of filters or drip emitters did not occur. Control plants received 100 ppm N from soluble fertilizer injected in irrigation lines supplied by a municipal water source. Number and weight of tomatoes from plants receiving swine effluent were equal to that of plants receiving soluble fertilizer. No differences in fruit quality were evident between treatments. Plant dry weight was also equal for three out of four cultivars. No differences in soil characteristics were detected between treatments after the study. Chemical analysis of the effluent showed a pH of 7.8 and nutrient concentrations of ≈110 ppm NH4-N, 57 ppm P2O5, 150 ppm K2O, and trace amounts of Cu and Zn. Though no differences in yield were detected in this study, the effluent's high pH and high NH4-N content need to be managed more closely for commercial tomato production.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 381-384 ◽  
Author(s):  
Kimberly A. Williams ◽  
Paul V. Nelson

Soilless container root media have little capacity to retain P, and preplant amendments of triple superphosphate (TSP) and water-soluble fertilizer (WSF) P applications are readily leached from them. A soilless medium modified with Al2(SO4)3 was tested to reduce such P losses. Aluminum sulfate solutions were applied to a 70 sphagnum peat: 30 perlite (v/v) medium to result in 0.32, 0.96, and 1.92 kg Al/m3 and dried at 70C. Adsorption isotherms (25C, 0 to 500 mg P/liter) showed that P retention increased as the rate of Al addition increased. In a greenhouse study, plants of Dendranthema ×grandiflorum (Ramat.) Kitamura `Sunny Mandalay' were grown in Al-modified media and an unmodified medium in factorial combination with P from preplant amendment of 0.1 kg TSP-P/m3, or P applied at each watering as WSF at rates of 5.5 or 21.8 mg P/liter. The two highest rates of Al were excessive and resulted in low pH and excessive soluble Al levels in the root medium solution early in the cropping cycle, which were detrimental to plant growth. When the root medium was modified with 0.32 kg Al/m3, soluble Al levels in medium solution were not significantly different than in the unmodified control. TSP-P that leached was substantially reduced by the addition of Al, yet sufficient P was released throughout the cropping cycle for adequate plant growth. Plants grown in Al-modified medium with 0.1 kg TSP-P/m3 did not differ from control plants in unmodified medium + 0.27 kg TSP-P/m3 and were larger than plants grown in unmodified medium + 0.1 kg TSP-P/m3. Aluminum modification of the root medium substantially reduced P leaching when used with WSF containing P. In addition, growth of plants in unmodified medium fertilized with 5.5 vs. 21.8 mg P/liter was similar.


2018 ◽  
Vol 5 (3) ◽  
pp. 27-32
Author(s):  
S. Antoniv ◽  
S. Kolisnyk ◽  
O. Zapruta

Aim. Development of effi cient fertilization of red clover seed sowings with mineral, lime and microfertilizers in order to optimize plant nutrition during their vegetation period to obtain stable seed yields with high sowing and yield qualities. Methods. fi eld, visual, measuring, weight, quantitative, method of a test sheaf, laboratory, mathematical-statistical. Results. The paper presents the results of optimizing the nutrition of red clover seed sowings on the basis of the rational application of quick-acting lime (Ca(OH) 2 – 0.5 of the rate by hydrolytic acidity, mineral (N 30 P 60 K 60 ) and water-soluble fertilizers, which ensured seed yield increase 1.8–2.0 times at the level of 0.35–0.40 t/ha. Conclusions. The most effective combination of the basic fertilization with mineral fertilizers (N 30 P 60 K 60 ) and lime fertilizers (Са(ОН) 2 ) at the rate of 0.5 by hydrolytic acidity applied under the cover crop using water-soluble fertilizer (plantafol – 1.0 kg/ha) and boric fertilizers (H 3 BO 4 – 0.8 kg/ha) at the shooting stage of the second cut of red clover and molybdenum fertilizers ((CNH 4 ) 2 MoO 4 – 0.3 kg/ha) in spring at the beginning of its regrowth.


HortScience ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 152-159 ◽  
Author(s):  
Christopher J. Currey ◽  
Roberto G. Lopez

Our objectives were to quantify the effects of controlled-release fertilizer (CRF) on the growth, morphology, and tissue nutrient concentration of annual bedding plants during propagation. Unrooted cuttings of Angelonia angustifolia ‘AngelFace White’ and ‘Sundancer Pink’, Impatiens hawkeri ‘Celebrette Apricot’ and ‘Celebrette Rose Hot’, Nemesia fruticans ‘Bluebird’ and ‘Raspberry Sachet’, Pelargonium ×hortorum ‘Savannah Red’, and Petunia ×hybrida ‘Cascadia Marshmallow Pink’ and ‘Suncatcher Yellow’ were received from a commercial propagator. Cuttings were immediately stuck individually in cells containing soilless substrate supplemented with 0, 3, 6, 12, or 24 g·L−1 CRF (Osmocote Plus 15–3.9–10 3–4 month) and placed under clear mist water or cuttings were stuck in substrate containing no CRF and fertilized with water-soluble fertilizer beginning immediately after placing cuttings into propagation. Shoot dry mass of cuttings grown in substrates containing up to 12 or 24 g·L−1 CRF increased by up to 150% for some taxa compared with unfertilized cuttings. Incorporating CRFs into propagation substrates increased the concentration of nitrogen (N), phosphorus (P), and potassium (K) in tissues by up to 103%, 42%, and 137%, respectively, compared with unfertilized cuttings. Additionally, tissue nutrient concentrations for cuttings fertilized with 6 g·L−1 CRF or greater were similar to cuttings receiving water-soluble fertilizer (WSF). When the impact of CRF on growth and nutrient concentrations are taken together, our results indicate that CRF is a fertilization application technology that holds promise for use during propagation of herbaceous stem-tip cuttings.


2019 ◽  
Vol 29 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Hardeep Singh ◽  
Bruce Dunn ◽  
Mark Payton ◽  
Lynn Brandenberger

Nutrient-film technique (NFT) trials were conducted to quantify the effect of two different water-soluble hydroponic fertilizers (5N–4.8P–21.6K and 5N–5.2P–21.6K) on different cultivars of lettuce (Lactuca sativa), basil (Ocimum basilicum), and swiss chard (Beta vulgaris). Results indicated swiss chard yield was affected only by cultivars, with Fordhook Giant producing the greatest fresh weight across fertilizer treatments. For lettuce production, interaction between fertilizers and cultivars was significant. ‘Mirlo’ and ‘Rubysky’ had greater growth compared with other cultivars in both fertilizers, whereas Dragoon performed well using 5N–4.8P–21.6K, but not 5N–5.2P–21.6K. For basil, dry weight production showed a significant interaction between fertilizers and cultivars. ‘Largeleaf’ produced greater dry weight with 5N–4.8P–21.6K, whereas ‘Lemon’ produced greater dry weight with 5N–5.2P–21.6K. For nutrient concentration of leaves, the concentrations were within the recommended range for lettuce when fertilized with 5N–5.2P–21.6K. Nutrient concentrations varied by nutrient from the recommended range for basil, but there was no significant difference between fertilizers. For swiss chard, the nutrient concentrations were in the recommended range and there was no difference between fertilizers. Therefore, growers may need to use more than one type of fertilizer for different lettuce and basil cultivars for optimum production, whereas swiss chard cultivars can be selected based on yield regardless of fertilizer.


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1728-1731 ◽  
Author(s):  
Donglin Zhang ◽  
Renae E. Moran ◽  
Lois B. Stack

Scaevola aemula R.Br. (fanflower), an ornamental plant native to Australia, produces stunted growth when fertilized with high concentrations of P. To determine optimum P concentration, rooted cuttings were transplanted into 15 cm standard pots and grown with a water soluble fertilizer, where P concentrations were 0, 14.5, 29.0, 43.5, 58.0, 72.5, 87.0 mg·L-1 and all plants received 200 mg·L-1 N and 166 mg·L-1 K. Shoot growth and flowering data were taken every 21 days until the experiment was terminated after 84 days. Shoot length, number and dry weight, and leaf size were reduced significantly at P concentrations higher than 14.5 mg·L-1 with severe reduction at P levels higher than 43.5 mg·L-1. Number of flowers per plant was not affected by P concentrations in the range of 0 to 43.5 mg·L-1, but decreased significantly at P levels higher than 43.5 mg·L-1. Medium pH decreased with increase in P rate due to the acidic nature of the P fertilizer. When P was applied in every irrigation, the optimum concentration was 14.5 mg·L-1 or less. P greater than 43.5 mg·L-1 was detrimental to vegetative growth and flowering, possibly due to above optimum P or to medium acidification.


HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 475-480 ◽  
Author(s):  
Kathryn M. Santos ◽  
Paul R. Fisher ◽  
Thomas Yeager ◽  
Eric H. Simonne ◽  
Hannah S. Carter ◽  
...  

The objective was to quantify the effect of the timing of macronutrient applications on nutrient uptake, growth, and development of Petunia ×hybrida Hort. Vilm.-Andr. ‘Supertunia Royal Velvet’ during vegetative propagation. Starting with unrooted cuttings (Day 0), fertigation was applied continuously at three time intervals (Day 0 to 7, Day 8 to 14, or Day 15 to 21) using either a “complete” (C) water-soluble fertilizer containing (in mg·L−1) 75 NO3-N, 25 NH4-N, 12 phosphorus (P), 83 potassium (K), 20 calcium (Ca), 10 magnesium (Mg), 1.4 sulfur (S), 2 iron (Fe), 1 manganese (Mn), 1 zinc (Zn), 0.5 copper (Cu), 0.5 boron (B), and 0.2 molybdenum (Mo) or a micronutrient fertilizer (M) containing (in mg·L−1) 1.4 S, 2 Fe, 1 Mn, 1 Zn, 0.5 Cu, 0.5 B, and 0.2 Mo in a complete factorial arrangement. With constant fertigation using the C fertilizer, plant dry weight (DW) doubled from Day 0 (sticking of unrooted cuttings) to Day 7 (0.020 g to 0.047 g), root emergence was observed by Day 4, and by Day 7, the average length of primary roots was 2.6 cm. During any week that the M fertilizer was substituted for the C fertilizer, tissue N–P–K concentrations decreased compared with plants receiving the C fertilizer. For example, plants receiving the M fertilizer between Day 0 and 7 had 20% lower tissue-N concentration at Day 7 compared with those receiving the C fertilizer. Although both shoot DW and leaf count increased once macronutrient fertilization was resumed after Day 7, final shoot DW and leaf count were lower than plants receiving C fertilizer from Day 0 to 21. Time to first root emergence was unaffected by fertigation. Constant application of C resulted in a higher shoot-to-root ratio at Day 21 than all other treatments. Results emphasize the importance of early fertigation on petunia, a fast-rooting species, to maintain tissue nutrient levels within recommended ranges.


Sign in / Sign up

Export Citation Format

Share Document