scholarly journals Biochemical and Gene Expression Involved in Red Blush Color Development in ‘Ambrosia’ Apple

2019 ◽  
Vol 144 (3) ◽  
pp. 164-171
Author(s):  
Peter M.A. Toivonen ◽  
Jared Stoochnoff ◽  
Kevin Usher ◽  
Changwen Lu ◽  
Paul A. Wiersma ◽  
...  

The market value of the apple (Malus ×domestica Borkh.) cultivar Ambrosia is closely linked to the characteristic blush on the skin surface. For ‘Ambrosia’ orchards that produce consistently low levels of surface blush, the implementation of reflective rowcovering has improved surface coloration, but the reflected wavebands responsible for this enhanced color production have not been confirmed. This study consisted of two separate experiments: one conducted in the field to confirm reflective rowcovering efficacy and the other in a controlled environment cabinet to determine which waveband was enhancing red blush production. The red blush production in orchards with and without reflective rowcovering was then directly compared with the red blush produced on the surface of apples that were poorly colored at harvest and then exposed to visible, fluorescent, ultraviolet A (UVA), or ultraviolet B (UVB) light sources within the controlled environment chamber. Consequent analysis of the red blush color within the Commission Internationale de l’Eclairage a* and b* color space was conducted to evaluate the quality of the red blush pigment under each treatment in the field and the controlled environment chamber. The analysis revealed that the red blush that developed on apples from the reflective rowcover treatment most closely matched the red blush that developed in response to UVB exposure in the controlled environment cabinet. Further analysis of gene expression and anthocyanin contents in the ‘Ambrosia’ apples support the hypothesis that the primary driver for the characteristic red blush development, when reflective rowcovers are used, is increased exposure to UVB light.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Vidya Lakshmi Purushothaman ◽  
Raphael E. Cuomo ◽  
Cedric F. Garland ◽  
Timothy K. Mackey

Abstract Background Vitamin D has been identified as a potential protective factor in the development of colorectal cancer (CRC). We expect to see a stronger association of ultraviolet B (UVB) exposure and CRC crude rates with increasing age since chronic vitamin D deficiency leads to sustained molecular changes that increase cancer risk. The DINOMIT (disjunction, initiation, natural selection, overgrowth, metastasis, involution, and transition) model postulates various stages of cancer development due to vitamin D deficiency and the associated latency period. The purpose of this study is to examine this age-dependent inverse relationship globally. Methods In this ecological study, a series of linear and polynomial regression tests were performed between country-specific UVB estimates adjusted for cloud cover and crude incidence rates of CRC for different age groups. Multiple linear regression was used to investigate the association between crude incidence rates of colorectal cancer and UVB estimate adjusting for urbanization, skin pigmentation, smoking, animal consumption, per capita GDP, and life expectancy. Statistical analysis was followed by geospatial visualization by producing choropleth maps. Results The inverse relationship between UVB exposure and CRC crude rates was stronger in older age groups at the country level. Quadratic curve fitting was preferred, and these models were statistically significant for all age groups. The inverse association between crude incidence rates of CRC and UVB exposure was statistically significant for age groups above 45 years, after controlling for covariates. Conclusion The age-dependent inverse association between UVB exposure and incidence of colorectal cancer exhibits a greater effect size among older age groups in global analyses. Studying the effect of chronic vitamin D deficiency on colorectal cancer etiology will help in understanding the necessity for population-wide screening programs for vitamin D deficiency, especially in regions with inadequate UVB exposure. Further studies are required to assess the need for adequate public health programs such as selective supplementation and food fortification.


1986 ◽  
Vol 66 (1) ◽  
pp. 125-130 ◽  
Author(s):  
G. H. FRIESEN ◽  
D. A. WALL

McCall, Maple Presto, Maple Amber and OT80-3 soybean (Glycine max (L.) Merr.) cultivars were evaluated under field conditions for their response to metribuzin. Maple Amber was found to be less tolerant than the other cultivars. In controlled environment chamber studies, injury to this cultivar was more severe on a sandy loam soil than on a clay loam soil. Fall applications of metribuzin, alone or tank-mixed with trifluralin, were tolerant to Maple Amber soybeans and such applications may offer a practical alternative to spring treatments for broad spectrum weed control in the less tolerant soybean cultivars grown in Manitoba.Key words: Metribuzin, trifluralin, preplant incorporation, fall treatments, soybean cultivars


1995 ◽  
Vol 411 ◽  
Author(s):  
J. R. Kokan ◽  
R. A. Gerhardt

ABSTRACTImpedance Spectroscopy is being used to study the humidity sensitivity of porous silica thin films. The films are processed via a colloidal sol-gel method which leaves some remnant potassium and sodium. Previous work on bulk porous silica samples processed by the same method showed that the dielectric properties and ac conductivity were very sensitive to changes in humidity. The aim of this work was to determine if the same dependencies could be found in the thin films. The capacitance, dielectric loss, and ac conductivity of the films were measured in a controlled environment chamber from 20–80% RH for frequencies ranging from 10Hz–10MHz. In addition to characterizing films with varying amounts of residual alkali ions obtained through leaching, we have also measured films that were surface doped with controlled amounts of KCl, LiCl, or NaCl. Relative humidity dependencies in the films are not as dramatic as in the bulk samples. The reasons for this behavior are not yet clear, but may be associated with the porosity, thickness, and surface area of the films.


2022 ◽  
Vol 11 ◽  
Author(s):  
Timothy C. Frommeyer ◽  
Craig A. Rohan ◽  
Dan F. Spandau ◽  
Michael G. Kemp ◽  
Molly A. Wanner ◽  
...  

The occurrence of non-melanoma skin cancer (NMSC) is closely linked with advanced age and ultraviolet-B (UVB) exposure. More specifically, the development of NMSC is linked to diminished insulin-like growth factor-1 (IGF-1) signaling from senescent dermal fibroblasts in geriatric skin. Consequently, keratinocyte IGF-1 receptor (IGF-1R) remains inactive, resulting in failure to induce appropriate protective responses including DNA repair and cell cycle checkpoint signaling. This allows UVB-induced DNA damage to proliferate unchecked, which increases the likelihood of malignant transformation. NMSC is estimated to occur in 3.3 million individuals annually. The rising incidence results in increased morbidity and significant healthcare costs, which necessitate identification of effective treatment modalities. In this review, we highlight the pathogenesis of NMSC and discuss the potential of novel preventative therapies. In particular, wounding therapies such as dermabrasion, microneedling, chemical peeling, and fractionated laser resurfacing have been shown to restore IGF-1/IGF-1R signaling in geriatric skin and suppress the propagation of UVB-damaged keratinocytes. This wounding response effectively rejuvenates geriatric skin and decreases the incidence of age-associated NMSC.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3776-3776
Author(s):  
Jonathan E Brammer ◽  
Amy E Boles ◽  
Anthony Mansour ◽  
Aharon G. Freud ◽  
Monique Mathé-Allainmat ◽  
...  

Background and Rationale: T-cell large granular lymphocytic leukemia (T-LGLL) is an incurable clonal proliferation of CD8+ memory T-cells that leads to profound neutropenia and anemia with limited treatment options. The primary driver of T-LGLL is overexpression of interleukin-15 (IL-15), a gamma-chain cytokine. Previously, we have demonstrated that mice overexpressing IL-15 develop DNA hypermethylation and chromosomal instability that leads to the spontaneous development of LGLL (Mishra et al. Cancer Cell 2012). Further, the IL-15 promoter is known to be hypermethylated in cutaneous T-cell lymphoma (CTCL), another IL-15 driven malignancy (Mishra et al. Cancer Discovery 2016). In CTCL patients, the counterintuitive increase in IL-15 mRNA was due to hypermethylation of its promoter at the repressor binding sequences in the IL-15 gene. However, the methylation status of the IL-15 promoter in T-LGLL patients remains unknown. Concept: We hypothesize that the IL-15 promoter is hypermethylated in patients with T-LGLL, leading to aberrant overexpression of IL-15 and that this hypermethylation is a critical event in the leukemogenesis of T-LGLL. If true, demethylation of the IL-15 promoter with a resultant decrease in IL-15 transcripts should lead to apoptosis of T-LGLL cells. Hypomethylation of the IL-15 promoter, therefore, may provide a novel therapeutic approach to inhibiting IL-15, the primary driver of T-LGLL. Results: CD3+/CD8+/CD5-/dim T-cells were purified from peripheral blood of LGLL patient (n=3) and normal donor (ND) (n=3) by flow cytometry sorting. We analyzed DNA methylation and gene expression profiling using reduced representation bisulfite and RNA sequencing. With bioinformatics analysis, we determined differential methylation (1-way ANOVA P= 0.0178) and expression (1-way ANOVA P =0.0059). These data sets revealed significant differential hypermethylation of gene promoters in leukemic samples, compared to controls (Figure 1A). Reduced representation bisulfite sequencing that can identify differentially methylated regions at single base-pair resolutions demonstrated an increase in DNA methylation of the IL-15 promoter in patient samples over controls. To determine the functional significance of this finding, we treated the MOTN-1 T-LGLL cell line in vitro with the hypomethylating agent, 5-azacytidine (5-aza) at concentrations of 0.5 uM, 1 uM, 2.5 uM, and 5 uM. At 24 and 48 hours, a marked decrease in the viability of T-LGLL cells was observed, from 100% to 49.50%, p=0.037; particularly at higher concentrations of 5-aza (100% to 27% +11.30%, p=0.0030). Next, we sought to determine whether 5-aza induced hypomethylation of the IL-15 promoter. IL-15 gene expression in MOTN-1 T-LGLL cells treated with 5-aza was measured in comparison to control treated MOTN-1 cells. A marked decrease in IL-15 expression was observed at all concentrations of 5-aza compared to control (Figure 1B, p=0.0001). These results confirm that 5-aza leads to decreased transcription of the IL-15 gene, possibly due to hypomethylation of the IL-15 promoter. Finally, to determine whether a decrease in IL-15 alone was the cause of increased apoptosis of T-LGLL cells, we exposed MOTN-1 cells to a novel IL-15 inhibitor, IBI-15, and compared cell viability against MOTN-1 cells exposed to an inactive control, IBI-40. Even more profound decrease in cell viability was observed utilizing IBI-15 that targets the binding of IL-15 to its receptor (Figure 1C). Together, these data suggest that hypermethylation of the IL-15 promoter is critical to the pathogenesis of T-LGLL, and that treatment with 5-aza is sufficient to induce hypomethylation of the IL-15 promoter, decrease IL-15 transcription, and induce apoptosis in T-LGLL cells. Conclusions: Hypermethylation of the IL-15 promoter, with subsequent increase in IL-15, is critical to the pathogenesis of T-LGLL. Inhibition of the IL-15 promoter hypermethylation by 5-aza leads to down-regulation of the IL-15 gene transcript, which is sufficient to induce apoptosis of T-LGLL cells. These data suggest that 5-aza induced hypomethylation may be a novel method to induce IL-15 inhibition and a potentially efficacious clinical strategy against T-LGLL. Disclosures Brammer: Bioniz Therapeutics, Inc.: Research Funding; Viracta Therapeutics, Inc.: Research Funding; Verastem, Inc: Research Funding. Porcu:Daiichi: Research Funding; BeiGene: Other: Scientific Board, Research Funding; Spectrum: Consultancy; Viracta: Honoraria, Other: Scientific Board, Research Funding; Innate Pharma: Honoraria, Other: Scientific Board, Research Funding; Kyowa: Honoraria, Other: Scientific Board, Research Funding; ADCT: Research Funding; Incyte: Research Funding. OffLabel Disclosure: IBI-15 IBI-40 IL-15 inhibitor


2009 ◽  
Vol 94 (5) ◽  
pp. 1835-1835
Author(s):  
Agatha Kokot ◽  
Dieter Metze ◽  
Nicolas Mouchet ◽  
Marie-Dominique Galibert ◽  
Meinhard Schiller ◽  
...  

2019 ◽  
Vol 23 (4) ◽  
pp. 371-378
Author(s):  
Xin Pan ◽  
Ying Guo ◽  
Ziyuan Liu ◽  
Zikai Zhang ◽  
Yuxiang Shi

The purpose of this paper is to investigate the standard light source for grading and displaying the color of red jadeite and to classify the color. With Raman spectrometer, ultraviolet-visible spectrophotometer and X-ray fluorescence spectrometer, the results show that, the Fe 3+ is the main chromogenic mineral of red jadeite, which negatively correlates with the tonal angle, while the color of red jadeite has a positive correlation with the hematite content. The color of 120 red jadeite samples was examined by collecting the reflective signaled from the sample surface using an integrating sphere with the portable X-Rite SP62 spectrophotometer based on CIE 1976 L*a*b* uniform color space. The color parameters of jadeite samples under D65, A and CWF standard light sources were analyzed. The light spectrum of D65 light source is continuous, relatively smoothed with high color temperature, which makes the sample color close to that under the natural light and can be used as the best evaluation light source. A light source contributes to improve the red tone of jadeite, which is the best light source for commercial display of red jadeite. CWF light source can be used as the auxiliary lighting for color evaluation. The color of red jadeite is divided into five levels from best to worst using K-Means cluster analysis and Fisher discriminant analysis under D65 light source: Fancy Vivid, Fancy Deep, Fancy Intense, Fancy dark and Fancy.


2016 ◽  
Vol 113 (52) ◽  
pp. 15114-15119 ◽  
Author(s):  
Benyam Kinde ◽  
Dennis Y. Wu ◽  
Michael E. Greenberg ◽  
Harrison W. Gabel

Rett syndrome is a severe neurodevelopmental disorder caused by mutations in the methyl-CpG binding protein gene (MECP2). MeCP2 is a methyl-cytosine binding protein that is proposed to function as a transcriptional repressor. However, multiple gene expression studies comparing wild-type and MeCP2-deficient neurons have failed to identify gene expression changes consistent with loss of a classical transcriptional repressor. Recent work suggests that one function of MeCP2 in neurons is to temper the expression of the longest genes in the genome by binding to methylated CA dinucleotides (mCA) within transcribed regions of these genes. Here we explore the mechanism of mCA and MeCP2 in fine tuning the expression of long genes. We find that mCA is not only highly enriched within the body of genes normally repressed by MeCP2, but also enriched within extended megabase-scale regions surrounding MeCP2-repressed genes. Whereas enrichment of mCA exists in a broad region around these genes, mCA together with mCG within gene bodies appears to be the primary driver of gene repression by MeCP2. Disruption of methylation at CA sites within the brain results in depletion of MeCP2 across genes that normally contain a high density of gene-body mCA. We further find that the degree of gene repression by MeCP2 is proportional to the total number of methylated cytosine MeCP2 binding sites across the body of a gene. These findings suggest a model in which MeCP2 tunes gene expression in neurons by binding within the transcribed regions of genes to impede the elongation of RNA polymerase.


Sign in / Sign up

Export Citation Format

Share Document