scholarly journals Structural and electrical studies on zinc added magnesium oxide nanoparticles

2020 ◽  
Vol 31 (3) ◽  
pp. 73-86
Author(s):  
Sumithraj Premkumar P. ◽  

Magnesium oxide (MgO, pure) and zinc added MgO nanoparticles were synthesised by a simple microwave assisted solvothermal method. The concentrations of impurity used in the present work were 0.25 M and 0.50 M. All samples were annealed at 400°C for 1 h to improve the ordering. The prepared pure and zinc added magnesium oxide nanoparticles were characterised by powder X-ray diffraction (PXRD), energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). PXRD studies of pure and zinc added MgO nanoparticles showed that all samples belong to crystalline nature with cubic structure. The grain size of all samples were determined from the XRD results and it belongs to nano meter scale. The EDS confirmed the presence of zinc, magnesium and oxide elements in the respective prepared samples. The scanning electron microscope images confirmed that the prepared samples possess nanometer dimensions. The electrical properties such as AC conductivity, dielectric constant and dielectric loss were measured at different temperatures in the different frequency range by involving the impedance analyser of all the prepared samples.

Author(s):  
Manne Anupama Ammulu ◽  
K. Vinay Viswanath ◽  
Ajay Kumar Giduturi ◽  
Praveen Kumar Vemuri ◽  
Ushakiranmayi Mangamuri ◽  
...  

Abstract Background Unlike chemical techniques, the combination of metal oxide nanoparticles utilizing plant concentrate is a promising choice. The purpose of this work was to synthesize magnesium oxide nanoparticles (MgO-NPs) utilizing heartwood aqueous extract of Pterocarpus marsupium. The heartwood extract of Pterocarpus marsupium is rich in polyphenolic compounds and flavonoids that can be used as a green source for large-scale, simple, and eco-friendly production of MgO-NPs. The phytoassisted synthesis of MgO is characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with EDS (energy dispersive X-ray spectroscopy), and transmission electron microscopy (TEM). Results The formation of MgO-NPs is confirmed by a visual color change from colorless to dark brown and they displayed a wavelength of 310 nm in UV-Spectrophotometry analysis. The crystalline nature of the obtained biosynthesized nanoparticles are revealed by X-ray diffraction analysis. SEM results revealed the synthesized magnesium oxide nanoparticles formed by this cost-effective method are spherically shaped with an average size of < 20 nm. The presence of magnesium and oxygen were confirmed by the EDS data. TEM analysis proved the spherical shape of the nanoparticles with average particle size of 13.28 nm and SAED analysis confirms the crystalline nature of MgO-NPs. FT-IR investigation confirms the existence of the active compounds required to stabilize the magnesium oxide nanoparticles with hydroxyl and carboxyl and phenolic groups that act as reducing, stabilizing, and capping agent. All the nanoparticles vary in particle sizes between 15 and 25 nm and obtained a polydispersity index value of 0.248. The zeta-potential was measured and found to be − 2.9 mV. Further, MgO-NPs were tested for antibacterial action against Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria) by minimum inhibitory concentration technique were found to be potent against both the bacteria. The blended nanoparticles showed good antioxidant activity examined by the DPPH radical scavenging method, showed good anti-diabetic activity determined by alpha-amylase inhibitory activity, and displayed strong anti-inflammatory activity evaluated by the albumin denaturation method. Conclusions The investigation reports the eco-friendly, cost-effective method for synthesizing magnesium oxide nanoparticles from Pterocarpus marsupium Rox.b heartwood extract with biomedical applications. Graphical abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Archana Venkatachalam ◽  
Joseph Prince Jesuraj ◽  
kalainathan Sivaperuman

The magnesium oxide nanoparticles (MgO NPs) were prepared from Moringa oleifera leaf extract. Phytochemicals are derived from plant extract which are served as stabilizing and capping agents. This green route has been attracted owing to speed, reliable, and eco-friendly and cost-effective one. The synthesized magnesium oxide nanoparticles were taken into three different calcination temperatures (500, 600, and 700°C). The powder X-ray diffraction (PXRD) study shows a pure phase of face-centered cubic structure. Periclase MgO nanoparticles were prepared. The optical band gap of MgO nanoparticles is 4.5 eV, and its absorption in the UV region was observed by UV-visible spectroscopy (UV-Vis). Photoluminescence spectra have exhibited multicolor emissions were being at UV and visible region due to defect centers (F centers) of MgO nanoparticles. EDX (energy dispersive X-ray spectrum) has given the stoichiometric ratio of Mg and O. The functional groups have been studied by Fourier transformed infrared spectroscopy (FTIR), surface morphology transformation has been identified by scanning electron microscopy (SEM) studies, and VSM measurements have given the information of diamagnetic nature of MgO nanoparticles. H-R TEM micrographs have confirmed that particles were in nanorange matched with XRD report. Polycrystalline nature has been observed pattern information. TG-DSC characterization revealed phase transition and weight loss information. D-band and G-band of MgO nanoparticles are studied by micro-Raman analysis. Dielectric analysis has proven that MgO nanoparticles will be a promising candidate for linear dielectric ceramics, thermistor. The present resent studies have revealed that MgO powder will be an economical and promising candidate in superconductor, optoelectronic device, and energy storage applications.


A simple cost effective preparation of Magnesium oxide nanoparticles in nanotube morphology is reported using Chemical co-precipitation method. As prepared magnesium oxide nanoparticles were characterized using UV-visible spectroscopy, X-ray Diffraction, Field Emission Scanning Electron Microscope and Energy dispersive X-ray spectroscopy. As prepared magnesium oxide nanoparticles were found in nanotube morphology whose inner and outer diameter were 31 nm and 78 nm. The band gap of as prepared nanotubes were found to be 5.37eV with maximum absorbance at 200 nm.


2020 ◽  
Vol 6 (2) ◽  
pp. 103-107 ◽  
Author(s):  
Seyyed Mohammad Javadi

Background: Rubber vulcanization is a consolidated chemical process to enhance the mechanical properties of the polymeric material by sulfur crosslinking of the polymer chains, such as rubber. Vulcanization Activators are important rubber processing additives that activate sulfur cure and improve the efficiency of sulfur-based cure systems. The most common activator is zinc fatty acid ester that is often formed in-situ by the reaction of fatty acid with zinc oxide. Although zinc is one of the less harmful heavy metals, according to European Council Directive 2004/73/EC, the reduction of zinc level in the environment has become an important task because of its toxic effect on aquatic organisms. : The current study reviews the research achievements in the field of reducing the consumption of micronutrients of ZnO particles based on the use of nanoparticles instead of them in the polymer industry. Among the proposed methods, due to the less environmental effects of magnesium oxide, the use of MgO nanoparticles instead of zinc oxide has also achieved good results. Objective: The aim of this paper is considering suggested different methods on the reduction of using ZnO particles in related industries, the use of ZnO nanoparticles has had better results than its particles. In addition, due to the less environmental effects of magnesium oxide, magnesium oxide nanoparticles can be used instead of micronutrients of zinc oxide. Overall, the results of various investigations show that reducing the diameter of the zinc oxide particles reduces the amount required for curing the rubber and thus reduces its toxic effects. Also, the use of magnesium oxide nanoparticles instead of zinc oxide in different concentrations is investigated.


Author(s):  
M. Shah ◽  
D. Patel

Oxcarbazepine has low solubility and low oral bioavailability, so it’s a challenge to formulate suitable dosage form. In this present investigation, to improve the dissolution rate and solubility, skimmed milk is used as a carrier. Physical mixers were prepared using various drugs to carrier ratio and spray drying technology was used to develop solid dispersion with the carrier. Various techniques were used to characterize the solid dispersion immediately after they were made which includes differential scanning calorimetry, scanning electron microscopy, fourier transform infra- red spectroscopy, X-ray diffraction and in-vitro dissolution profiles. The differential scanning calorimetry thermograms of raw drug indicated of its anhydrous crystalline nature. In thermograms of solid dispersion, the characteristic peak was absent suggesting the change from crystalline nature to amorphous form. X-ray diffraction confirmed those results. X-ray diffraction results of raw drug showed highly intense peak characteristic of its crystalline nature where solid dispersion showed less intense, more diffused peak indicating the change in crystalline form. Fourier transforms infra-red spectroscopy studies showed there was no interaction between drug and carrier. Scanning electron microscopy support the amorphous nature of mixer. The whole formulation showed distinct enhancement in the drug release behavior and solubility. The optimum oxcarbazepine to skimmed milk ratio 1:3 enhances the in-vitro drug release by 3.5 fold and also show distinct increase in solubility. It was concluded that for improvement of solubility of poorly water soluble oxcarbazepine, skimmed milk powder as a carrier can be utilize very well.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Maged S. Al-Fakeh ◽  
Roaa O. Alsaedi

Cobalt oxide nanoparticles (CoO NPs) were synthesized by the calcination method from the Co (II) complex which has the formula [Co(PVA)(P-ABA)(H2O)3], PVA = polyvinyl alcohol, and P-ABA = para-aminobenzoic acid. The calcination temperature was 550°C, and the products were characterized by element analysis, thermal analyses (TGA and DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-Vis spectra, and scanning electron microscopy (SEM) techniques. The kinetic and thermodynamic parameters (∆H   ∗ , ∆G   ∗ , and ∆S   ∗ ) for the cobalt (II) complex are calculated. The charges been carried by the atoms cause dipole moment 10.53 and 3.84 debye and total energy 11.04 × 102 and 24.80 × 102k Cal mol−1 for the Co (II) complex and cobalt oxide, respectively. X-ray diffraction confirmed that the resulting oxide was pure single-crystalline CoO nanoparticles. Scanning electron microscopy indicating that the crystallite size of cobalt oxide nanocrystals was in the range of 36–54 nm. Finally, the antimicrobial activity of cobalt oxide nanoparticles was evaluated using four bacterial strains and one fungal strain. Two strains of Gram-positive cocci (Staphylococcus aureus and Enterococcus faecalis), two strains of Gram-negative bacilli (Escherichia coli and Pseudomonas aeruginosa), and one strain of yeast such as fungi (Candida albicans) were used in this study.


2021 ◽  
Vol 33 (10) ◽  
pp. 2287-2292
Author(s):  
K. Vijayashree ◽  
K. Sheshappa Rai

Insertion of metal-oxide nanoparticles to polymers stipulate the modification of physical properties of polymers over and above the accomplishment of new features in the polymer matrix. In the current study, an attempt was made to disperse the CuO nanoparticles in the polyvinyl alcohol and hydroxypropyl methylcellulose (HPMC) blend to investigate the structural, mechanical and optical properties of the nanocomposite. Blend was prepared in different ratios using PVA and HPMC, viz. 25:50, 50:50 and 75:25 wt%. The CuO nanoparticles were added to the 75:25 PVA:HPMC blend in different percentage like 0.5,1 and 1.5%. The polymer with and without CuO incorporation were subjected to X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, UV-visible spectral analyses and mechanical strength, etc. The results revealed that the incorporation of the CuO nanoparticles enhanced the structural and mechanical properties of the polymer by forming successful nanocomposite.


1998 ◽  
Vol 13 (9) ◽  
pp. 2588-2596 ◽  
Author(s):  
K. H. Ryu ◽  
J-M. Yang

The low temperature pressureless sintering of a nanosized Si3N4 powder with doped sintering additives was investigated. The microstructural evolution during sintering at different temperatures was analyzed using x-ray diffraction and scanning electron microscopy. The effect of using nanosized Si3N4 powder as a catalyst to accelerate the α→β–Si3N4 transformation of a commercial Si3N4 powder with larger particle sizes was also investigated. Finally, two stage sintering was used to study the feasibility of controlling the microstructure and the mechanical properties of the nanosized silicon nitride.


2019 ◽  
Vol 969 ◽  
pp. 93-97
Author(s):  
S. Manivannan ◽  
B. Narenthiran ◽  
A. Sivanantham ◽  
S.P. Kumaresh Babu

The experimatal alloys were aged at different temperatures of 180°C, 200°C, 220°C, and 240º C with calcium addition levels of (X=0.5, 1, 1.5, 2%) on Mg-6Al-1Zn-XCa alloy were investigated in 3.5% NaCl solution. All the experimatal alloys were immersed in 3.5% NaCl solutions and the resulted surface were analyzed to study the corrosion behaviour and its surface topography by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The result shows that corrosion attack occurred predominantly on ß phase and α phase exhibit relatively minor corrosion. In addition to that the increased aging temperature coarsens the intermetallic as well as α- Mg grains, which shows adverse effect to corrosion resistances and the best result were obtained at composition of 0.5wt.% Ca aged at 200°C.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4424 ◽  
Author(s):  
Mehrdad Khatami ◽  
Mina Sarani ◽  
Faride Mosazadeh ◽  
Mohammadreza Rajabalipour ◽  
Alireza Izadi ◽  
...  

Nanoparticles of cerium oxide CeO2 are important nanomaterials with remarkable properties for use in both industrial and non-industrial fields. In a general way, doping of oxide nanometric with transition metals improves the properties of nanoparticles. In this study, nickel- doped cerium oxide nanoparticles were synthesized from Stevia rebaudiana extract. Both doped and non-doped nanoparticles were characterized by X-ray diffraction, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray, Raman spectroscopy, and Vibrating-Sample Magnetometry analysis. According to X-ray diffraction, Raman and Energy Dispersive X-ray crystalline and single phase of CeO2 and Ni doped CeO2 nanoparticles exhibiting fluorite structure with F2g mode were synthesized. Field Emission Scanning Electron Microscopy shows that CeO2 and Ni doped nanoparticles have spherical shape and sizes ranging of 8 to 10 nm. Ni doping of CeO2 results in an increasing of magnetic properties. The enhancement of ultraviolet protector character via Ni doping of CeO2 is also discussed.


Sign in / Sign up

Export Citation Format

Share Document