scholarly journals Acute toxicity of birch tar oil on aquatic organisms

2008 ◽  
Vol 19 (1) ◽  
pp. 24 ◽  
Author(s):  
M. HAGNER ◽  
O-P. PENTTINEN ◽  
T. PASANEN

Birch tar oil (BTO) is a by-product of processing birch wood in a pyrolysis system. Accumulating evidence suggests the suitability of BTO as a biocide or repellent in terrestrial environments for the control of weeds, insects, molluscs and rodents. Once applied as biocide, BTO may end up, either through run-off or leaching, in aquatic systems and may have adverse effects on non-target organisms. As very little is known about the toxicity of BTO to aquatic organisms, the present study investigated acute toxicity (LC50/EC50) of BTO for eight aquatic organisms. Bioassays with the Asellus aquaticus (crustacean), Lumbriculus variegatus (oligochaeta worm), Daphnia magna (crustacean), Lymnea sp. (mollusc), Lemna minor (vascular plant), Danio rerio (fish), Scenedesmus gracilis (algae), and Vibrio fischeri (bacterium) were performed according to ISO, OECD or USEPA-guidelines. The results indicated that BTO was practically nontoxic to most aquatic organisms as the median effective BTO concentrations against most organisms were >150 mg L-1. In conclusion, our toxicity tests showed that aquatic organisms are to some extent, invariably sensitive to birch tar oil, but suggest that BTO does not pose a severe hazard to aquatic biota. We deduce that, unless BTOs are not applied in the immediate vicinity of water bodies, no special precaution is required.;

2020 ◽  
Vol 36 (7) ◽  
pp. 467-476
Author(s):  
Halis Boran

Metal-based nanoparticles (NPs) can release metal ions that are toxic to aquatic organisms; however, whether the toxicity is from metal ions rather than unique “nano-scale” effects of the NPs is unresolved. The present study aimed to compare the toxicity of Cu2+ and Cu-NPs in larval zebrafish ( Danio rerio) to clarify whether toxic effects are attributable to release of Cu ions and to determine the effect of the chelating agent ethylenediaminetetraacetic acid (EDTA) and calcium hardness (as CaCO3) on the Cu toxicity. First, the acute toxicity (96-h lethality) of Cu-NPs was determined in comparison to aqueous Cu in larvae exposed to CuSO4, and subsequently, sublethal tests with Cu-NPs and CuSO4 were conducted with additions of EDTA or calcium ions to evaluate alterations in expression of metallothionein-2 ( MT2) gene transcripts (quantitative real-time polymerase chain reaction). Acute toxicity of Cu in larvae exposed to CuSO4 was greater (LC50 = 226 µg Cu/L) than for larvae exposed to Cu-NPs (LC50 = 648 µg Cu/L). The expression of MT2 increased with Cu concentration ( p < 0.05), and the slope of the linear regression was significantly greater in fish exposed to CuSO4 (slope = 0.090) compared to Cu-NPs (slope = 0.011). Cu2+ was 2.9-fold more toxic than Cu-NPs. The presence of 5 mg/L EDTA and 220 mg/L CaCO3 significantly reduced the expression of MT2 (1.8-fold for EDTA, 2.3-fold for CaCO3) in larvae exposed to CuSO4. For larvae exposed to Cu-NPs, the presence of EDTA reduced the expression of MT2 (1.7-fold) relative to Cu-NP concentration. While Cu-NPs induced MT2 expression, the differences in concentration relationships of MT2 expression between Cu-NPs and CuSO4 indicated that factors other than release of Cu ions from Cu-NPs influenced acute toxicity of Cu-NPs. The conclusion drawn from this ecotoxicological risk assessment was that EDTA and calcium significantly decreased Cu toxicity in freshwater fish.


Author(s):  
Eva Poštulková ◽  
Radovan Kopp

The emergence and development of new algicidal products is caused by the ever increasing popularity of garden ponds as well as the use of these products in the fisheries sector, especially for disposal of cyanobacteria and algae. Most frequent means of combating cyanobacteria and algae are applications of algicidal substances. Newly developed algaecides include Guanicid and polyhexamethylene guanidine hydrochloride (PHMG). The aim of the study was to identify toxic effects of Guanicid and PHMG on zebrafish (Danio rerio) and green algae (Desmodesmus communis). We determined the acute toxicity in fish according to ČSN EN ISO 7346-1, and conducted the freshwater algae growth inhibition test according to ČSN ISO 8692 methodology. For inhibition tests with green algae we chose Guanicid and PHMG concentrations of 0.001, 0.005, and 0.010 ml/L. For fish short-term acute toxicity tests we chose Guanicid concentrations of 0.010, 0.050, 0.150, 0.200, 0.250, and 0.300 ml/L and PHMG concentrations of 0.010, 0.025, 0.050, 0.075, 0.100, and 0.125 ml/L. In case of zebrafish (Danio rerio), the LC50 value for Guanicid is 0.086 ml/L, while the LC50 value for PHMG is 0.043 ml/L. Effects of Guanicid on inhibition of green algae (Desmodesmus communis) appear highly significant (p < 0.010) at a concentration of 0.010 ml/L. For PHMG, these effects are highly significant (p < 0.001) at concentrations of 0.005 and 0.010 ml/L in 48 hours.


Author(s):  
Ana Zapata ◽  
Isabel Oller ◽  
Raphael Gallay ◽  
César Pulgarín ◽  
Manuel Ignacio Maldonado ◽  
...  

AbstractThis paper compares the feasibility of two different treatment approaches, chemical oxidative treatment by the solar photo-Fenton method and a combined approach applying the solar photo-Fenton method as a pre-treatment for aerobic biological wastewater treatment. The targets are two biorecalcitrant substances used as synthesis intermediates in the pharmaceutical industry, 2-(2,4-dichlorophenyl)-2-(1H-imidazol-1-ylmethyl)-1,3-dioxolan-4-ylmethanol (CAS 84682-23-5) (DIDM) and 2-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)- 1,3-dioxolan-4-ylmethanol (CAS 67914-85-6) (DTDM). Solar photo-Fenton treatment was performed in Compound Parabolic Collector pilot-plants, and biological treatment in an immobilized biomass reactor pilot-plant. Analytical determinations included the measurement of dissolved organic carbon, chemical oxygen demand, inorganic compounds (chloride, ammonium, nitrate), formed during degradation, acute toxicity tests applying Vibrio Fischeri luminescence bacteria and the Zahn-Wellens biodegradability test. The synthetic wastewater contained 200 mg/L of each compound, an initial DOC of 200 mg/l and an initial COD of 700 mg/L. The target compounds proved to be susceptible to complete degradation and partial mineralization (95%) by photo-Fenton. Total elimination of both substances occurred after 74 minutes of illumination and required the consumption of 27.5 mM of hydrogen peroxide. Nevertheless, acute toxicity persisted practically to the end of the treatment, and biodegradability could only be slightly enhanced, never rendering the wastewater completely biodegradable at any stage of the chemical oxidative treatment. By Zahn-Wellens test DIDM and DTDM proved to be non-biodegradable and only samples pre-treated by photo-Fenton until achieving a DOC below 98 mg/L showed a significant degree of biodegradability (60% after 11 days of biotreatment). This particular behaviour contrasts with other substances that have been tested before and may be related to the refractory nature of the imidazole and triazole moieties in the molecular structure of DIDM and DTDM.


The Analyst ◽  
2014 ◽  
Vol 139 (18) ◽  
pp. 4696-4701 ◽  
Author(s):  
Insup Jung ◽  
Ho Bin Seo ◽  
Ji-eun Lee ◽  
Byoung Chan Kim ◽  
Man Bock Gu

The use of genetically engineered bioluminescent bacteria, in which bioluminescence is induced by different modes of toxic action, represents an alternative to acute toxicity tests using living aquatic organisms (plants, vertebrates, or invertebrates) in an aqueous environment.


2020 ◽  
Vol 1 (1) ◽  
pp. 67-76
Author(s):  
Tugba Olmez-Hanci ◽  
Idil Arslan-Alaton

Aims: The study aimed at assessing the effectiveness of the PS/UV-C, PS/ZVA and PS/ZVA/UV-C processes in terms of ciprofloxacin, a fluoroquinolone type commercially important antibiotic, and toxicity abatements in raw surface water (RSW) and distilled water (DW). Background: The occurrence of ciprofloxacin (CIP), the most widely prescribed second-generation fluoroquinolone antibiotic, even at trace level (ng/L) gives rise to antibiotic resistant bacteria and resistance genes, which can further impair the selection of genetic variants of microorganisms and impose adverse effect on human health. Objective: The degradation and detoxification of ciprofloxacin with UV-C (PS/UV-C) and ZVA (PS/ZVA) activated PS oxidation systems were investigated in distilled water (DW) and raw (untreated) surface water (RSW) samples. Moreover, CIP degradation with the PS/ZVA/UV-C heterogeneous photochemical treatment combination was also studied. Methods: The process performances of the investigated treatment systems were evaluated in terms of CIP abatement and PS consumption rates as well as dissolved organic carbon (DOC) removal efficiencies. The influence of common inorganic ions and natural organic matter (NOM) on CIP degradation was evaluated. Radical quenching experiments were conducted using probe compounds in order to elucidate the dominant reaction mechanism. In addition, acute toxicity of the original CIP and its degradation products were questioned by employing Vibrio fischeri (V. fischeri), the marine photobacterium, under optimized treatment conditions. Results: CIP was completely degraded in distilled water (DW) and raw (untreated) surface water (RSW) samples after 15 min of treatment with the PS/UV-C process (PS=0.25mM; pH=3; UVC= 2.7W/m2). PS/UV-C experiments conducted with RSW at its natural pH (=8.5) resulted in 98% CIP and practically no DOC removal whereas 56% DOC was removed at pH 3 after 120 min. Radical quenching studies revealed that sulfate radicals prevailed over hydroxyl radicals. CIP degradation was significantly inhibited by the presence of humic acid due to the effect of UV absorption and free radical quenching. Acute toxicity tests with V. fischeri exhibited fluctuating trends throughout the investigated processes and did not change appreciably after 120 min of oxidation. Conclusion: The results of this study demonstrated that PS/UV-C is superior to the PS/ZVA and PS/ZVA/UV-C treatment systems for both DW and RSW samples in terms of CIP removal rates. No additional positive effect was evident for simultaneous catalytic and photochemical PS activation (PS/ZVA/UV-C treatment system). It could be also demonstrated that the selected oxidation processes conducted in pure water might give an idea about the advanced treatment systems but realistic conditions with actual water/wastewater matrices still need to be further investigated to verify their feasibility and ecotoxicological safety.


2001 ◽  
Vol 2001 (2) ◽  
pp. 935-940 ◽  
Author(s):  
William R. Gala ◽  
Gary A. Rausina ◽  
Michael J. Ammann ◽  
Paul Krause

ABSTRACT Aquatic toxicity information is critical to provide scientifically defensible estimates of ecological impact and natural resource injury to aquatic organisms resulting from a petroleum spill. For most crude oils, the availability of aquatic toxicity information is a significant data gap. As part of Chevron's oil-specific properties summary sheet project, a series of marine fish (silversides, top smelt) and invertebrate (mysid shrimp) acute toxicity tests on five crude oils with extensive chemical analysis (e.g., VPH C6–C9, CROSERF VOCs, EPH C10–C32, PAHs) of exposure concentrations have been performed. Acute toxicity studies were conducted under standard test guidelines. ASTM D 6081 procedures were used to prepare individual water extracts, also called water-accommodated fractions (WAFs), of each test concentration to which the test organisms were exposed. WAF preparation and testing was done in tightly closed containers with minimal headspace to reduce volatilization and maintain stable exposure levels of dissolved hydrocarbons as much as possible. Also, WAFs were replenished daily with fresh test solution. Since toxicity results are expressed as the mean exposure concentration of a particular subset of the petroleum compounds in the WAF that resulted in 50% lethality in the test species, the LC50 values in μg/L will vary depending on which subset is used to describe the effect of the oil on the aquatic organisms. Additionally, since the aquatic organisms are exposed to a mixture of hydrocarbons in the WAF, LC50 values expressed as one subset's concentration are not independent of the presence of other petroleum constituent types. The results indicate that generally invertebrates (i.e., mysid) are more sensitive than fish. LC50s expressed as total polycyclic hydrocarbons (PAHs) showed the least variability—96-hour LC50s for total PAHs ranged from 19–36 μg/L and 30–128 μg/L for mysid and fish, respectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
J. Kalka

Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests withDaphnia magna, Thamnocephalus platyurus, Vibrio fischeri,andRaphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1203
Author(s):  
Lucia Tajnaiová ◽  
Radek Vurm ◽  
Marina Kholomyeva ◽  
Miroslav Kobera ◽  
Vladimír Kočí

Herbicides help increase agricultural yields significantly, but they may negatively impact the life of non-target organisms. Modifying the life cycle of primary producers can affect other organisms in the food chain, and consequently in the whole ecosystem. We investigated the effect of common herbicides Roundup® Classic Pro (active substance glyphosate) and Garlon New (triclopyr and fluroxypyr) on aquatic organisms duckweed Lemna minor and green algae Desmodesmus subspicatus, and on the enzymatic activity of soil. We also compared the effects of Roundup® Classic Pro to that of a metabolite of its active substance, aminomethylphosphonic acid (AMPA). The results of an algal growth test showed that AMPA has a 1.5× weaker inhibitory effect on the growth of D. subspicatus than the Roundup formula, and the strongest growth inhibition was caused by Garlon New (IC50Roundup = 267.3 µg/L, IC50Garlon = 21.0 µg/L, IC50AMPA = 117.8 mg/L). The results of the duckweed growth inhibition test revealed that Roundup and Garlon New caused 100% growth inhibition of L. minor even at significantly lower concentrations than the ready-to-use concentration. The total chlorophyll content in the fronds was lowest when Garlon New was used. The highest dehydrogenase activity was observed in soil treated with Garlon New, and the lowest in soil treated with Roundup® Classic Pro. The results of this study showed that all three tested substances were ecotoxic to the tested organisms.


2021 ◽  
Author(s):  
Nalissa Farrah Khan

The increasing demand of alternative energy sources has created interest in biodiesel and biodiesel blends; biodiesel is promoted as a diesel substitute. Like diesel spills, biodiesel spills can have deleterious effects on aquatic environments. The effect of neat biodiesel, biodiesel blends and diesel on O. mykiss and D. magna was evaluated using acute toxicity testing. Static non-renewable bioassays of freshwater organisms containing B100, B50, B20, B5 and conventional diesel fuel were used to compare the acute effects of biodiesel to diesel. Mortality was the significant endpoint measurement in this study; percent mortality and lethal concentration (LC50) at different exposure times were determined from the acute toxicity tests performed. Trials were considered valid if the controls exhibited more than 90% survival. Based on percent mortality and LC50 values, a toxicity ranking of fuels was developed. The results of the definitive tests indicated that diesel is more toxic than neat biodiesel or biodiesel blends. This approach can provide insights into the lethality of biodiesel spills in the aquatic environment.


2014 ◽  
Vol 26 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Raquel Aparecida Moreira ◽  
Adrislaine da Silva Mansano ◽  
Lidiane Cristina da Silva ◽  
Odete Rocha

AIM: In this study we compared the sensitivity of three species of Cladocera, Daphnia magna, Ceriodaphnia silvestrii and Macrothrix flabelligera, to the commercial product of the herbicide Atrazine, the Atrazine Atanor 50 SC® (500 g/L), widely used on crops in Brazil. METHODS: Acute toxicity tests were performed at the nominal atrazine concentrations 2.25, 4.5, 9.0, 18.0, 36 and 72 mg L-1, on C. silvestrii and M. flabelligera and at 2.25, 4.5, 9.0, 18.0, 36, 72 and 144 mg L-1 on D. magna. The range of concentrations tested was established in a series of preliminary tests. RESULTS: The toxicity tests showed that the two species naturally occurring in water bodies in Brazil were more susceptible than Daphnia magna. The effective concentrations of Atrazine Atanor 50 SC® (EC50- 48 h) to the species M. flabelligera, C. silvestrii and D. magna were 12.37 ± 2.67 mg L-1, 14.30 ± 1.55 mg L-1 and 50.41 ± 2.64 mg L-1, respectively. Furthermore, when EC50 observed here for M. flabelligera and C. silvestrii were compared with published values of EC50 or LC50 (mg L-1) for various aquatic organisms exposed to atrazine, it was seen that these two cladocerans were the most sensitive to the herbicide. CONCLUSIONS: Considering these results and the broad distribution of C. silvestrii and M. flabelligera in tropical and subtropical regions, it is concluded that these native species would be valuable test organisms in ecotoxicological tests, for the monitoring of toxic substances in tropical freshwaters.


Sign in / Sign up

Export Citation Format

Share Document