Turn Your Company Outside-In! How to Build the Empowered Network Organization, Guided by Beyond Budgeting Principles: A Practical Paper on Cell Structure Design, Part II

2008 ◽  
Author(s):  
Niels Pflaeging ◽  
Valéria Junqueira ◽  
Gebhard Borck ◽  
Andreas Zeuch
2021 ◽  
Author(s):  
Varun Ojha ◽  
Giorgio Jansen ◽  
Andrea Patanè ◽  
Antonino La Magna ◽  
Vittorio Romano ◽  
...  

AbstractWe propose a two-stage multi-objective optimization framework for full scheme solar cell structure design and characterization, cost minimization and quantum efficiency maximization. We evaluated structures of 15 different cell designs simulated by varying material types and photodiode doping strategies. At first, non-dominated sorting genetic algorithm II (NSGA-II) produced Pareto-optimal-solutions sets for respective cell designs. Then, on investigating quantum efficiencies of all cell designs produced by NSGA-II, we applied a new multi-objective optimization algorithm II (OptIA-II) to discover the Pareto fronts of select (three) best cell designs. Our designed OptIA-II algorithm improved the quantum efficiencies of all select cell designs and reduced their fabrication costs. We observed that the cell design comprising an optimally doped zinc-oxide-based transparent conductive oxide (TCO) layer and rough silver back reflector (BR) offered a quantum efficiency ($$Q_e$$ Q e ) of 0.6031. Overall, this paper provides a full characterization of cell structure designs. It derives relationship between quantum efficiency, $$Q_e$$ Q e of a cell with its TCO layer’s doping methods and TCO and BR layer’s material types. Our solar cells design characterization enables us to perform a cost-benefit analysis of solar cells usage in real-world applications.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5198
Author(s):  
Beatriz A. Braz ◽  
Vânia B. Oliveira ◽  
Alexandra M. F. R. Pinto

Passive direct methanol fuel cells (pDMFCs) are promising devices to replace the conventional batteries in portable electronic devices, due to their higher energy densities, autonomies, and instant recharging. However, some challenges, such as their costs, efficiency, and durability, need to be overcome before their commercialization. Towards that, this work presents the effect of the anode diffusion layer (ADL) properties on the performance of a pDMFC using a membrane electrode assembly (MEA) with reduced loadings on both anode and cathode catalysts (3 mg/cm2 Pt/Ru on the anode and 1.3 mg/cm2 of Pt on the cathode). The pDMFC behavior was evaluated through polarization and electrochemical impedance spectroscopy measurements, which allow identifying and quantifying the different losses that affect these systems. The results showed better performances when a diffusion layer with a dual-layer structure was used using higher methanol concentrations. The maximum power density achieved was 3.00 mW/cm2, using carbon cloth with a microporous layer, CC_MPL, as ADL, and a methanol concentration of 5 M. In this work, a tailored and low-cost MEA, using the materials available in the market, was proposed to achieve higher performances working under higher methanol concentrations. This work demonstrates that performing modifications on the fuel cell structure/design is an efficient way to achieve optimized performances.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4732
Author(s):  
Fei Wang ◽  
Xiaoming Tao

In the fields of humanoid robots, soft robotics, and wearable electronics, the development of artificial skins entails pressure sensors that are low in modulus, high in sensitivity, and minimal in hysteresis. However, few sensors in the literature can meet all the three requirements, especially in the low pressure range (<10 kPa). This article presents a design for such pressure sensors. The bioinspired liquid-filled cell-type structural design endows the sensor with appropriate softness (Young’s modulus < 230 kPa) and high sensitivity (highest at 0.7 kPa−1) to compression forces below 0.65 N (6.8 kPa). The low-end detection limit is ~0.0012 N (13 Pa), only triple the mass of a bee. Minimal resistance hysteresis of the pressure sensor is 7.7%. The low hysteresis is attributed to the study on the carbon/silicone nanocomposite, which reveals the effect of heat treatment on its mechanical and electromechanical hysteresis. Pressure measurement range and sensitivity of the sensor can be tuned by changing the structure and strain gauge parameters. This concept of sensor design, when combined with microfluidics technology, is expected to enable soft, stretchable, and highly precise touch-sensitive artificial skins.


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Sign in / Sign up

Export Citation Format

Share Document