scholarly journals EVALUATION OF RAINFED AGRICULTURE MANAGEMENT PRACTICES AS AN APPROACH FOR SUSTAINABILITY IN NORTHWESTERN COAST (NWC), EGYPT

2021 ◽  
Vol 9 (10) ◽  
pp. 190-203
Author(s):  
Omnia Mohamed Wassif ◽  

Sustainable development can be possible in rainfed agriculture by integrated approach of soil management measures. Soil quality in the form of a quantitative index is used as an indicator of environmental quality and sustainability. Twelve farms selected to achieve the targets of the present investigation (six farms under traditional rainfed agriculture system and six farms under rainfed with supplemental irrigation) at Northwestern Coastal Zone (NWCZ). These farms varied in land use and management practices concerning fertilization practices, tillage system, crop type and cultivated period. This study selected some soil indicators vis-à -vis soil physicochemical properties of the selected farms of studied areas at NWCZ. The rating of soil quality index (SQI) and relative of soil quality (RSQI) values in this study were higher towards to rainfed agriculture with supplement irrigation farms than in traditional rainfed farms. In addition, most of the values of soil quality change (∆RSQI) were moderately increase (class II) and most of these farms were under traditional rainfed management. The results of cumulative rating index CRI showed a negative correlation and significant relationship with RSQI (R2=0.82, p<0.05). concerning the impacts of soil quality on productivity, the relationship between relative yield (Ry %) and RSQI was positive significant correlation (R2=0.78, p<0.05). Also, CRI showed negative significant correlation with Ry% (R2=0.81, p<0.05). Moreover, the highly soil quality class I, highly sustainability, low changes in soil quality and highly crop yield observed was in the farms under rainfed with supplemental irrigation system and good fertilization practices (NPK+organic manure). So, this study recommended to expansion rainfed with supplemental irrigation management system and add suitable dose of NPK application with manure along scientific lines to encourage crop yields that can be achieved on a sustainable basis, but it need a long time to reach class I quality and highly sustainable status.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Su ◽  
Benoit Gabrielle ◽  
Damien Beillouin ◽  
David Makowski

AbstractConservation agriculture (CA) has been promoted to mitigate climate change, reduce soil erosion, and provide a variety of ecosystem services. Yet, its impacts on crop yields remains controversial. To gain further insight, we mapped the probability of yield gain when switching from conventional tillage systems (CT) to CA worldwide. Relative yield changes were estimated with machine learning algorithms trained by 4403 paired yield observations on 8 crop species extracted from 413 publications. CA has better productive performance than no-till system (NT), and it stands a more than 50% chance to outperform CT in dryer regions of the world, especially with proper agricultural management practices. Residue retention has the largest positive impact on CA productivity comparing to other management practices. The variations in the productivity of CA and NT across geographical and climatical regions were illustrated on global maps. CA appears as a sustainable agricultural practice if targeted at specific climatic regions and crop species.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 173-185 ◽  
Author(s):  
R. Zornoza ◽  
J. A. Acosta ◽  
F. Bastida ◽  
S. G. Domínguez ◽  
D. M. Toledo ◽  
...  

Abstract. Soil quality (SQ) assessment has long been a challenging issue, since soils present high variability in properties and functions. This paper aims to increase the understanding of SQ through the review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses – soil organic carbon and pH being the most used indicators. The use of nitrogen and nutrient content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, with microbial biomass and enzyme activities being the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish an SQI, based on scoring and weighting of different soil indicators, selected by means of multivariate analyses. The use of multiple linear regressions has been successfully used for forest land use. Urban soil quality has been poorly assessed, with a lack of adoption of SQIs. In addition, SQ assessments where human health indicators or exposure pathways are incorporated are practically inexistent. Thus, further efforts should be carried out to establish new methodologies to assess soil quality not only in terms of sustainability, productivity and ecosystem quality but also human health. Additionally, new challenges arise with the use and integration of stable isotopic, genomic, proteomic and spectroscopic data into SQIs.


Soil Research ◽  
2015 ◽  
Vol 53 (3) ◽  
pp. 274 ◽  
Author(s):  
P. A. Swanepoel ◽  
C. C. du Preez ◽  
P. R. Botha ◽  
H. A. Snyman ◽  
J. Habig

Soil quality of pastures changes through time because of management practices. Excessive soil disturbance usually leads to the decline in soil quality, and this has resulted in concerns about kikuyu (Pennisetum clandestinum)–ryegrass (Lolium spp.) pasture systems in the southern Cape region of South Africa. This study aimed to understand the effects of tillage on soil quality. The soil management assessment framework (SMAF) and the locally developed soil quality index for pastures (SQIP) were used to assess five tillage systems and were evaluated at a scale inclusive of variation in topography, pedogenic characteristics and local anthropogenic influences. Along with assessment of overall soil quality, the quality of the physical, chemical and biological components of soil were considered individually. Soil physical quality was largely a function of inherent pedogenic characteristics but tillage affected physical quality adversely. Elevated levels of certain nutrients may be warning signs to soil chemical degradation; however, tillage practice did not affect soil chemical quality. Soil disturbance and the use of herbicides to establish annual pastures has lowered soil biological quality. The SQIP was a more suitable tool than SMAF for assessing soil quality of high-input, dairy-pasture systems. SQIP could facilitate adaptive management by land managers, environmentalists, extension officers and policy makers to assess soil quality and enhance understanding of processes affecting soil quality.


Author(s):  
Prof. Vanita Babanne ◽  
Amol Kajale ◽  
Gaurav Menaria ◽  
Manish Kamble ◽  
Pranav Mundada

Irrigation forms one of the mainstays of agriculture and food production. As a result of outdated strategies in developing and developing countries, much water is wasted in this process. In this article, we have established a regulatory model of irrigation management to put a check on this waste of water by providing a good irrigation system for farming. The prototype Smart Automatic Irrigation Controller (SAIC) has two operating units, viz. Wireless Sensor Unit and Wireless Information Processing Unit . The purpose of the sensor unit is to measure climate and soil conditions and to calculate the actual water loss due to evapotranspiration. Processing unit considers this calculation and performs the regulatory action required to control workers by delivering the right amount of water to the farm. A combination of basic rules is included in the decision-making table. The model is initially developed and validated in the process of testing the effectiveness. The results obtained showed the potential to compensate for water loss by almost 100%. The regulator experienced a 27% reduction in water use and a 40% increase in crop yields. The prototype is connected to a cloud server for data storage and remote access to control. The device is efficient, inexpensive, and usable so that end users can use it easily and comfortably. The model is new and unique in the sense that it can plan irrigation for all types of crops, in all climatic conditions of all soil types while feeding the right combination of soil growth stage in the inference engine.


2019 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Supriyadi Supriyadi ◽  
Widyatmani Sih Dewi ◽  
Desmiasari Nugrahani ◽  
Adila Azza Rahmah ◽  
Haryuni Haryuni ◽  
...  

Increased rice needs in an extensive use of paddy fields in the Jatipurno, Wonogiri. Managing rice fields can reduce soil quality. Proper management can improve soil quality, Jatipurno has management such as organic, semi-organic and inorganic paddy field management which have a real effect on soil quality. Assessment of soil quality is measured by physical, chemical and biological indicators, where each factor has a different effect. The chemical indicators are often used as the main indicators for determining soil quality, whereas every parameter has the opportunity to be the main indicator. So, biological indicators can play indicators. The main indicators are obtained from the correlation test (p-values &le; 0,05 - &lt; 0,01) and Principal Component Analysis with high value, eigenvalues &gt; 1 have the potential to be used as Minimum Data Sets. The result is biological can be able to use as the Minimum Data Set such as microbial carbon biomass, respiration, and total bacterial colonies. The Soil Quality Index (SQI) of various paddy management practices shows very low to low soil quality values. The management of organic rice systems shows better Soil Quality Index with a score of 0,20 compared to other management. The practice of organic rice management shows that it can improve soil quality.


Author(s):  
Hiba Et-Tayeb ◽  
Khalid Ibno Namr ◽  
El Houssine El Mzouri ◽  
Bouchra El Bourhrami

2020 ◽  
Author(s):  
Timothy Foster ◽  
Roshan Adhikari ◽  
Subash Adhikari ◽  
Anton Urfels ◽  
Timothy Krupnik

&lt;p&gt;In many parts of South Asia, electricity for groundwater pumping has been directly or indirectly subsidised by governments to support intensification of agriculture. In contrast, farmers in large portions of the Eastern Indo-Gangetic Plains (EIGP) remain largely dependent on unsubsidised diesel or petrol power for irrigation pumping. Combined with a lack of comprehensive aquifer mapping, high energy costs of pumping limit the ability of farmers to utilise available groundwater resources. This increases exposure to farm production risks, in particular drought and precipitation variability.&lt;/p&gt;&lt;p&gt;To date, research to address these challenges has largely focused on efforts to enhance rural electrification or introduce renewable energy-based pumping systems that remain out of reach of many poor smallholders. However, there has been comparatively little focus on understanding opportunities to improve the cost-effectiveness and performance of the thousands of existing diesel-pump irrigation systems already in use in the EIGP. Here, we present findings from a recent survey of over 432 farmer households in the mid-western Terai region of Nepal &amp;#8211; an important area of diesel-pump irrigation in the EIGP. Our survey provides information about key socio-economic, technological and behavioral aspects of diesel pump irrigation systems currently in operation, along with quantitative evidence about their impacts on agricultural productivity and profitability.&lt;/p&gt;&lt;p&gt;Survey results indicate that groundwater irrigation costs vary significantly between individual farmers. Farmers faced with higher costs of groundwater access irrigate their crops less frequently, which in turn results in lower crop yields and reduced overall farm profitability. Our data indicate that pumpset fuel efficiency may be a key driver of variability in irrigation costs, with large horsepower (&gt;5 HP) Indian-made pumpsets appearing to have significantly higher fuel consumption rates (1.10 litre/hour and $18,000) and investments costs than alternative smaller horsepower (&lt;5 HP) Chinese-made pumpsets (0.76 litre/hr and $30,000). Despite this, the majority of farmers continue to favour Indian pumpsets due to their higher reliability and well-established supply chains. Variability in access costs is also related to differences in capacity of farmers to invest in their own pumping systems. Pumpset rental rates in the region increase irrigation costs by a factor of 3-4 relative to the cost of fuel alone. Furthermore, rental rates typically are structured on a per-hourly basis, further exacerbating access costs for farmers with low yielding wells or whose irrigation management practices are less efficient.&lt;/p&gt;&lt;p&gt;Our findings highlight that opportunities exist to reduce costs of groundwater use in existing diesel irrigation systems through improved access to more energy efficient pumping systems. This would have positive near-term impacts on agricultural productivity and rural livelihoods, in particular helping farmers to more effectively buffer crops against monsoonal variability. Such near-term improvements in diesel pump irrigation systems would also play an important role in supporting agriculture in the EIGP to transition to more sustainable and clean sources of energy for irrigation pumping. However, efforts to enhance irrigation access must also occur alongside improvements to aquifer monitoring and governance of extraction, in order to minimise risks of future depletion such as observed in other parts of the IGP.&lt;/p&gt;


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sh. Yeilagi ◽  
Salar Rezapour ◽  
F. Asadzadeh

AbstractThe assessment of soil quality indices in waste leachate-affected soils is vital to understand the threats of land quality degradation and how to control it. In this respect, a study was conducted on the effects of uncontrolled landfill leachate on soil quality index (SQI) in calcareous agricultural lands using 28 soil variables. Using the total data set (TDS) and minimum data set (MDS) approaches, the SQI was compared between leachate-affected soils (LAS) and control soils by the integrated quality index (IQI) and nemoro quality index (NQI) methods. The results revealed that LAS were significantly enriched by soil salinity-sodicity indices including electrical conductivity (EC), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP), fertility indices including total N, available P and K, organic carbon, and cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, and Na), the available and total fractions of heavy metals (Zn, Cu, Cd, Pb, Ni). After the leachate got its way into the soil, the values of IQI and NQI were dropped ranging 5–16% and 6.5–13% for the TDS approach and 5–15.2% and 7.5–12.2 for the MDS approach, respectively. Clearly, the data showed that soil quality degradation was encouraged and stimulated by the leachate. Among the different models of SQI applied in the present study, IQI determined by MDS was the optimal model to estimate soil quality and predict crop yields given the analysis of the correlations among the SQI models, the correlations between the SQI models and wheat yield, and sensitivity index values.


2015 ◽  
Vol 19 (1) ◽  
pp. 293-307 ◽  
Author(s):  
A. Fernald ◽  
S. Guldan ◽  
K. Boykin ◽  
A. Cibils ◽  
M. Gonzales ◽  
...  

Abstract. Southwestern US irrigated landscapes are facing upheaval due to water scarcity and land use conversion associated with climate change, population growth, and changing economics. In the traditionally irrigated valleys of northern New Mexico, these stresses, as well as instances of community longevity in the face of these stresses, are apparent. Human systems have interacted with hydrologic processes over the last 400 years in river-fed irrigated valleys to create linked systems. In this study, we ask if concurrent data from multiple disciplines could show that human-adapted hydrologic and socioeconomic systems have created conditions for resilience. Various types of resiliencies are evident in the communities. Traditional local knowledge about the hydrosocial cycle of community water management and ability to adopt new water management practices is a key response to disturbances such as low water supply from drought. Livestock producers have retained their irrigated land by adapting: changing from sheep to cattle and securing income from outside their livestock operations. Labor-intensive crops decreased as off-farm employment opportunities became available. Hydrologic resilience of the system can be affected by both human and natural elements. We find, for example, that there are multiple hydrologic benefits of traditional irrigation system water seepage: it recharges the groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. Human decisions to transfer water out of agriculture or change irrigation management, as well as natural changes such as long-term drought or climate change, can result in reduced seepage and the benefits it provides. We have worked with the communities to translate the multidisciplinary dimensions of these systems into a common language of causal loop diagrams, which form the basis for modeling future scenarios to identify thresholds and tipping points of sustainability. Early indications are that these systems, though not immune to upheaval, have astonishing resilience.


Sign in / Sign up

Export Citation Format

Share Document