scholarly journals BLASTOCYSTIS SP. ENHANCES OXIDATIVE STRESS-INDUCED CARCINOGENESIS IN COLORECTAL CANCER: IN VIVO EXPERIMENTAL STUDY.

2019 ◽  
Vol 7 (9) ◽  
pp. 1231-1238
Author(s):  
Nashwa ELKhazragy ◽  
◽  
Ghada ASaad
2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


Antioxidants ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 136 ◽  
Author(s):  
Jesse Fischer ◽  
Tim Eglinton ◽  
Frank Frizelle ◽  
Mark Hampton

Colorectal cancer (CRC) is the third most common cancer in the Western world, with one-third of cases located in the rectum. Preoperative radiotherapy is the standard of care for many patients with rectal cancer but has a highly variable response rate. The ability to predict response would be of great clinical utility. The response of cells to ionizing radiation is known to involve immediate damage to biomolecules and more sustained disruption of redox homeostasis leading to cell death. The peroxiredoxins are an important group of thiol-dependent antioxidants involved in protecting cells from oxidative stress and regulating signaling pathways involved in cellular responses to oxidative stress. All six human peroxiredoxins have shown increased expression in CRC and may be associated with clinicopathological features and tumor response to ionizing radiation. Peroxiredoxins can act as markers of oxidative stress in various biological systems but they have not been investigated in this capacity in CRC. As such, there is currently insufficient evidence to support the role of peroxiredoxins as clinical biomarkers, but it is an area worthy of investigation. Future research should focus on the in vivo response of rectal cancer to radiotherapy and the redox status of peroxiredoxins in rectal cancer cells, in order to predict response to radiotherapy. The peroxiredoxin system is also a potential therapeutic target for CRC.


2020 ◽  
Vol 31 (1) ◽  
pp. 3-10
Author(s):  
V. S. Nedzvetsky ◽  
V. Ya. Gasso ◽  
A. M. Hahut ◽  
I. A. Hasso

Cadmium is a common transition metal that entails an extremely wide range of toxic effects in humans and animals. The cytotoxicity of cadmium ions and its compounds is due to various genotoxic effects, including both DNA damage and chromosomal aberrations. Some bone diseases, kidney and digestive system diseases are determined as pathologies that are closely associated with cadmium intoxication. In addition, cadmium is included in the list of carcinogens because of its ability to initiate the development of tumors of several forms of cancer under conditions of chronic or acute intoxication. Despite many studies of the effects of cadmium in animal models and cohorts of patients, in which cadmium effects has occurred, its molecular mechanisms of action are not fully understood. The genotoxic effects of cadmium and the induction of programmed cell death have attracted the attention of researchers in the last decade. In recent years, the results obtained for in vivo and in vitro experimental models have shown extremely high cytotoxicity of sublethal concentrations of cadmium and its compounds in various tissues. One of the most studied causes of cadmium cytotoxicity is the development of oxidative stress and associated oxidative damage to macromolecules of lipids, proteins and nucleic acids. Brain cells are most sensitive to oxidative damage and can be a critical target of cadmium cytotoxicity. Thus, oxidative damage caused by cadmium can initiate genotoxicity, programmed cell death and inhibit their viability in the human and animal brains. To test our hypothesis, cadmium cytotoxicity was assessed in vivo in U251 glioma cells through viability determinants and markers of oxidative stress and apoptosis. The result of the cell viability analysis showed the dose-dependent action of cadmium chloride in glioma cells, as well as the generation of oxidative stress (p <0.05). Calculated for 48 hours of exposure, the LD50 was 3.1 μg×ml-1. The rates of apoptotic death of glioma cells also progressively increased depending on the dose of cadmium ions. A high correlation between cadmium concentration and apoptotic response (p <0.01) was found for cells exposed to 3–4 μg×ml-1 cadmium chloride. Moreover, a significant correlation was found between oxidative stress (lipid peroxidation) and induction of apoptosis. The results indicate a strong relationship between the generation of oxidative damage by macromolecules and the initiation of programmed cell death in glial cells under conditions of low doses of cadmium chloride. The presented results show that cadmium ions can induce oxidative damage in brain cells and inhibit their viability through the induction of programmed death. Such effects of cadmium intoxication can be considered as a model of the impact of heavy metal pollution on vertebrates.


Author(s):  
Edmara T. P. Bergamo ◽  
Paula G. F. P de Oliveira ◽  
Ryo Jimbo ◽  
Rodrigo Neiva ◽  
Nick Tovar ◽  
...  

2017 ◽  
Vol 68 (7) ◽  
pp. 1506-1511
Author(s):  
Cerasela Mihaela Goidescu ◽  
Anca Daniela Farcas ◽  
Florin Petru Anton ◽  
Luminita Animarie Vida Simiti

Oxidative stress (OS) is increased in chronic diseases, including cardiovascular (CV), but there are few data on its effects on the heart and vessels. The isoprostanes (IsoP) are bioactive compounds, with 8-iso-PGF25a being the most representative in vivo marker of OS. They correlate with the severity of heart failure (HF), but because data regarding OS levels in different types of HF are scarce, our study was aimed to evaluate it by assessing the urinary levels of 8-iso-PGF2aand its correlations with various biomarkers and parameters. Our prospective study included 53 consecutive patients with HF secondary to ischemic heart disease or dilative cardiomyopathy, divided according to the type of HF (acute, chronic decompensated or chronic compensated HF). The control group included 13 hypertensive patients, effectively treated. They underwent clinical, laboratory - serum NT-proBNP, creatinine, uric acid, lipids, C reactive protein (CRP) and urinary 8-iso-PGF2a and echocardiographic assessment. HF patients, regardless the type of HF, had higher 8-iso-PGF2a than controls (267.32pg/�mol vs. 19.82pg/�mol, p[0.001). The IsoP level was directly correlated with ejection fraction (EF) (r=-0.31, p=0.01) and NT-proBNP level (r=0.29, p=0.019). The relative wall thickness (RWT) was negatively correlated with IsoP (r=-0.55, p[0.001). Also 8-iso-PGF25a was higher by 213.59pg/�mol in the eccentric left ventricular (LV) hypertrophy subgroup comparing with the concentric subgroup (p=0.014), and the subgroups with severe mitral regurgitation (MR) and moderate/severe pulmonary hypertension (PAH) had the highest 8-iso-PGF2a levels. Male sex, severe MR, moderate/severe PAH, high LV mass and low RWT values were predictive for high OS level in HF patients.Eccentric cardiac remodeling, MR severity and PAH severity are independent predictors of OS in HF patients.


2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


Sign in / Sign up

Export Citation Format

Share Document