scholarly journals Biologically Active Substances of Siberian Medical Plants in Functional Wgey-Based Drinks

2019 ◽  
Vol 49 (1) ◽  
pp. 14-22
Author(s):  
Светлана Иванова ◽  
Svetlana Ivanova ◽  
Ирина Милентьева ◽  
Irina Milenteva ◽  
Людмила Асякина ◽  
...  

The use of infusions and extracts from domestic plant materials is a promising direction in the development of functional beverages since they contain a wide range of substances of various pharmacological properties. Drinks fortified with physiologically active natural components maintain a certain level of this content in human body. They can have a healing or prophylactic effect. However, there is a lack of technologies for the effective production of biologically active substances from plant materials. Moreover, the development of cultivated botanical medicinal plant species remains quite poor. The present study features the qualitative and quantitative composition of biologically active substances of medicinal plants that are endemics of Siberia. They are Rhodiola rosea (Rhodiola rosea L.) and maral root (Rhaponticum carthamoides). The paper introduces a method for increasing their biosynthetic activity. An experiment helped to select a composition of the nutrient medium for the cultivation of callus cultures of Rhodiola rosea (Rhodiola rosea L.) and maral root (Rhaponticum carthamoides) in vitro, which contributed to an increase in the biosynthesis of biologically active substances. For callus cultures of Rhodiola Rosea (line R.r-1k) the following composition was used: mineral base – MS; sucrose – 30 g; inositol – 100 mg; thiamine – 1.0 mg; pyridoxine – 1.0 mg; Ca-panthetonate – 10 mg; kinetin – 0.05 g; naphthyl acetic acid – 0.1 g; 2.4-D – 0.5. For callus cultures of maral root (line R.c -2k): mineral base – SH; sucrose – 30 g; inositol – 100 mg; thiamine – 5.0 mg; pyridoxine – 0.5 mg; nicotinic acid – 5.0 mg; kinetin – 0.1 g; indoleacetic acid – 1.0 g. The authors developed a technology for the production of functional whey-based tonic drink fortified with extract of carotenoids isolated from the fruits of mountain ash and the extract of biologically active substances Rhodiola rosea and maral root. The presence of biologically active substances in the plant and medicinal raw materials gives the drink antioxidant and bactericidal properties, as well as helps to raise the overall state of the organizm and strengthen the immune system.

2021 ◽  
pp. 291-300
Author(s):  
Elena Nikolaevna Sokolova ◽  
Tat'yana Vladimirovna Yuraskina ◽  
Yuliya Aleksandrovna Borshcheva ◽  
Natal'ya Aleksandrovna Fursova ◽  
Anton Yur'yevich Sharikov ◽  
...  

Currently, the diet of almost all population groups in Russia is characterized by a deficiency of vitamins, essential amino acids, macro- and micronutrients, as well as biologically active substances (flavonoids, carotenoids, etc.). Replenishment of the lack of these components in the diet of the population due to natural sources of plant origin is an important and actual task of national health care. The rational use of natural components of plant materials containing a wide range of natural biologically active substances using biocatalytic methods, as well as the selection of optimal conditions for obtaining commodity forms of ingredients, will allow to create preventive products that have a beneficial effect on the human body. Theoretical research in the field of promising sources of food and biologically active ingredients among wild species of plant materials were carried out. Biomedical properties of Sorbus aucuparia were described. The technological characteristics of the biologically active substances extraction from dried plant raw materials was investigated. Thus, it was revealed that the degree of dried berries grinding about 0.2–0.8 mm, the hydromodule 1 : 10 and the extraction duration 240 minutes are most effective for the extractive substances yield. The enzymatic complex, allowing the maximum to release biologically valuable components to extract was selected. The amino acid composition of rowanberry with the use of high-performance liquid chromatography was investigated. Produced fermentalizates contain complex of biologically active compounds, including amino acids, vitamins, carotenoids, phenolic substances, that makes these ingredients promising for creation of various foodstuffs to improve quality, nutritional and biological value, taste and other consumer properties.


Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 389-393
Author(s):  
D.V. Mitrofanov ◽  
N.V. Budnikova

The drone brood contains a large number of substances with antioxidant activity. These substances require stabilization and strict adherence to storage conditions. Among these substances are unique decenoic acids, the content of which is an indicator of the quality of drone brood and products based on it. The ability of drone brood to reduce the manifestations of oxidative stress is shown. There are dietary supplements for food and drugs based on drone brood, which are used for a wide range of diseases. Together with drone brood, chitosan-containing products, propolis, royal jelly can be used. They enrich the composition with their own biologically active substances and affect the preservation of the biologically active substances of the drone brood. Promising are the products containing, in addition to the drone brood, a chitin-chitosan-melanin complex from bees, propolis, royal jelly. The chitin-chitosan-melanin complex in the amount of 5% in the composition of the adsorbent practically does not affect the preservation of decenic acids, while in the amount of 2% and 10% it somewhat worsens. The acid-soluble and water-soluble chitosan of marine crustaceans significantly worsens the preservation of decenoic acids in the product. Drone brood with royal jelly demonstrates a rather high content of decenoic acids. When propolis is introduced into the composition of the product, the content of decenoic acids increases according to the content of propolis.


2021 ◽  
Vol 11 (6) ◽  
pp. 2555
Author(s):  
Lyudmila Asyakina ◽  
Svetlana Ivanova ◽  
Alexander Prosekov ◽  
Lyubov Dyshlyuk ◽  
Evgeny Chupakhin ◽  
...  

This work aims to study the qualitative composition of biologically active substance (BAS) extracts in vitro callus, cell suspension, and root cultures of the medicinal plant Rhaponticum carthamoides. The research methodology is based on high-performance liquid chromatography, and 1H nuclear magnetic resonance (NMR) spectra, to study the qualitative and quantitative analysis of BAS. The results of the qualitative composition analysis of the dried biomass extracts of in vitro callus, cell suspension and root cultures showed that the main biologically active substances in the medicinal plant Rhaponticum carthamoides are 2-deoxy-5,20,26-trihydroxyecdyson (7 mg, yield 0.12%), 5,20,26-trihydroxyecdyson 20,22-acetonide (15 mg, yield 0.25%), 2-deoxy-5,20,26-trihydroxyecdyson 20,22-acetonide (6 mg, yield 0.10%), 20,26-dihydroxyecdyson 20,22-acetonidecdyson 20,22-acetonide (5 mg, yield 0.09%), and ecdyson 20,22-acetonide (6 mg, yield 0.10%). In the future, it is planned to study the antimicrobial, antioxidant, and antitumor activity of BAS of extracts of in vitro callus, cell suspension, and root cultures of the medicinal plant Rhaponticum carthamoides, for the production of pharmaceuticals and dietary supplements with antitumor, antimicrobial and antioxidant effects.


2020 ◽  
pp. 197-206
Author(s):  
Natal'ya Valer'yevna Karazhan

The aim of the research was to study the variability of the content of polysaccharides and flavonoids of Bidens cernua herb, depending on the terms of harvesting, drying conditions and place of growth on the territory of the Republic of Belarus. It was shown that the maximum polysaccharide content was observed in the phase of budding and mass flowering of the plant. Unlike polysaccharides, the content of flavonoids in the budding phase was significantly lower than in the mass flowering phase (p<0.05), which accounts for the maximum content of flavonoids, and in particular, luteolin-7-O-glucoside. The highest polysaccharide content was noted for raw plant materials undergone natural drying or at 40 and 60 °C without ventilation. An increase in the drying temperature or the use of ventilation during drying led to a significant decrease in the content of this group of biologically active substances. The content of flavonoids of Bidens cernua herb, dried at elevated temperature with ventilation, regardless of the drying temperature used, was higher than the content of this group of biologically active substances in comparison with samples of raw plant materials subjected to natural drying (p<0.05). A higher flavonoid content was also noted for Bidens cernua herb, dried without ventilation at 40 and 60 °C. The content of polysaccharides and flavonoids of Bidens cernua herb, depending on the harvesting region, varied between 35.64–90.52 mg/g and 23.11–49.86 mg/g, respectively, and was most dependent on the amount of precipitation per year region. Based on the results obtained, it is recommended to harvest Bidens cernua herb during mass flowering and to dry at 40 °C without ventilation.


2020 ◽  
pp. 163-170 ◽  
Author(s):  
Alexandra Zaushintsena ◽  
Evgeny Bruhachev ◽  
Olga Belashova ◽  
Lyudmila Asyakina ◽  
Marina Kurbanova ◽  
...  

Introduction. Modern scientific research into the biochemical composition and medicinal value of plants makes it possible to use them as functional ingredients in food technology. The research objective was to test rose root (Rhodiola rosea L.) and scullcap (Scutellaria galericulata L.) for biologically active substances and their potential use in functional dairy products. Study objects and methods. The research featured biologically active substances (BAS) obtained from rose root and scullcap that grow in mountain areas or on rock outcrops along Siberian rivers. The BAS content was determined using high performance liquid chromatography (HPLC). The biologically active substances were screened and identified using HPLC, thin-layer chromatography (TLC), and infra-red identification (IR). The new functional products were based on whey and cottage cheese made from processed whole milk. Results and discussion. The analysis of Rhodiola rosea rhizomes and roots showed the following BAS content (mg/g): rosavin – 16.9, salidroside – 14.3, rosin – 5.04, rosarin – 2.01, and methyl gallate – 6.8. The roots of Scutellaria galericulata had the following BAS content (mg/g): scutellarein – 22.27, baicalin – 34.37, baicalein – 16.30, apigenin – 18.80, chrysin – 6.50, luteolin – 5.40, and vogonin – 3.60. Whey served as a basis for a new functional whey drink fortified with BAS isolated from Rhodiola rosea 100 mL of the drink included 50 mL of whey, 20 mL of apple juice, 0.1 mL of rose root concentrate, 3 g of sugar, 0.5 g of apple pectin, 04 g of citric acid, and 30 mL of ionized water. The content of phytochemical elements ranged from 0.11 ± 0.001 to 0.49 ± 0.08 mg/100 g. Cottage cheese served as a basis for another dairy product fortified with BAS obtained from Scutellaria galericulata. The formulation included 81 g of cottage cheese, 10 mL of cherry jam, 9 g of sugar, and 0.025 mL of scullcap concentrate. The content of biologically active substances in the finished product varied from 0.09 ± 0.02 for luteolin to 0.48 ± 0.11 for baicalin. The whey drink fortified with the BAS extracted from Rhodiola rosea and the cottage cheese product fortified with the BAS isolated from Scutellaria galericulata satisfied 40–45% and 55–60% of the reference daily intake for phenolic compounds, respectively. The obtained data made it possible to recommend the new functional foods for commercial production. Conclusion. A set of experiments was performed to isolate biologically active substances from Rhodiola rosea and Scutellaria galericulata. The research developed and tested formulations of two new functional products based on whey and cottage cheese.


2020 ◽  
Vol 50 (3) ◽  
pp. 393-403
Author(s):  
Irina Sergeeva ◽  
Alexandra Zaushintsena ◽  
Evgeniy Bryukhachev

Introduction. Longitudinal studies of human activity and metabolism revealed various anti-inflammatory, immunomodulatory, antistress, antioxidant, and adaptogenic properties of such secondary plant metabolites as phenolic compounds and pigments. Human cells cannot synthesize these compounds. Therefore, food biotechnology requires new data on the photosynthetic potential of plants with good functional prospects. The research objective was to study the qualitative and quantitative profile of biologically active compounds of Rhodiola rosea L. harvested from various plant communities in order to define the potential of their extracts and minor compounds for food technologies. Study objects and methods. The research featured three communities of Rhodiola rosea L. originally located in ecologically and geographically different habitats. They were introduced into Kuzbass from the Kuznetsk Alatau, Gorny Altai, and the Tunka alpine tundra belt in Buryatia. The experiment began in 2018, when the rhizomes were dissected into equal shares of 40–42 g and placed in a medicinal plant nursery. The methods of high-performance liquid (HPLC) and thin-layer (TLC) chromatography were used to study the biologically active substances in the plant biomass. The photosynthetic pigments were detected using the spectrophotometric method. The obtained data underwent a statistical analysis based on Statistica 6.0 software. Results and discussion. The sample from the Gorny Altai community revealed twelve biologically active substances. Its rhizomes appeared rich in gallic acid with the maximum content (mg/g) of 10.26 ± 2.31, rosein (20.45 ± 3.46), daphneticin (13.80 ± 2.30), and salidroside (28.16 ± 2.27). The tops demonstrated the maximum content (mg/g) of astragaline (38.94 ± 2.21), tricine (13.07 ± 0.72), tricine-5-O-β-D-glucopyranoside (35.25 ± 1.66), tricine-7-O-β-D-glucopyranoside (30.23 ± 1.45), and tyrosol (21.80 ± 1.21). The Kuznetsk Alatau sample proved to possess five biologically active substances. Its rhizomes had the maximum content (mg/g) of rosavin (16.89 ± 2.11) and salidroside (14.35 ± 2.52). The sample obtained from the Tunka ridge in Buryatia had six biologically active substances with the maximum content (mg/g) of rosavin (20.72 ± 2.11), methylgalate (39.00 ± 1.05), and cinnamaldehyde (10.15 ± 1.93) in the rhizomes. The top biomass of Rhodiola rosea L. accumulated about 0.333 mg/g of chlorophylls and synthesized 0.109 mg/g of carotenoids on average. The research established the correlation coefficients between the content of photosynthetic components with morphometric characteristics, including two positive dependences between the content of carotenoids and the number of leaves (r = 0.89 ± 0.09) and the content of carotenoids and shoot length (r = 0.96 ± 0.22). Conclusion. The samples of Rhodiola rosea L. demonstrated a good biotechnological potential for medicine and food industry. The Kuznetsk Alatau plant community proved rich in rosavin, salidroside, and methyl gallate. The Gorny Altai samples revealed high content of salidroside, gallic acid, daphnetitsin, and rosein. The Tunka samples appeared to synthesize a lot of methyl gallate, rosavin, and cinnamaldehyde. In addition, the top biomass of the Altai sample proved rich in tricine and its derivatives, astragaline and tyrosol. The research also established the possibility of commercial extraction of photosynthetic pigments from the top biomass of Rhodiola rosea L. for functional food production.


2021 ◽  
Vol 6 (3) ◽  
pp. 226-235
Author(s):  
E. R. Vasilevskaya ◽  
M. A. Aryuzina ◽  
E. S. Vetrova

Technologies of isolation and concentration of biologically active substances, developed in the middle of the 20th century, need adjustment and adaptation to modern conditions both to increase the activity of substances and for greater economic efficiency. The aim of the research is the comparison of dynamics of biologically active compounds extraction from porcines pancreas in two methods: the saline method based on 0.9% sodium chloride solution, and the acidic method based on 2.4% trichloroacetic acid solution. Also the purpose of research is to assess the possibilities for further optimization of technologies. The total protein concentration based on the biuret reaction in the samples taken during the extraction, as well as the calculation and analysis of the point degrees and rates of extraction are chosen as the controlled parameters. Local maxima of the protein yields into the extractant media at the 60th, 135th and 255th minute were recorded during saline extraction; and at the 75th and 135th minute during acid extraction. Also the proteomic profile of the extracts was studied. Wide range of compounds with molecular weight of less than 52 kDa was found in extracts based on physiological saline solution, and protein substances of whole presented range of molecular weights in trichloroacetic acid based extracts were considered. The predominance of low molecular weight protein fraction of interest was noted also in this method of extraction in comparison with the other methods of extraction. According to the UniProt database, we assume availability of probable compounds with a molecular weight of less than 30 kDa in the purified acidic extract. The presence of some proteins absent in the final saline extract was noted. The acidic erythrograms showed a weak degrading effect of both types of extracts on the membranes of rat erythrocytes, as well as the cytoprotective effect of acidic ultrafiltrates (less than 3 kDa). The obtained results prove a better efficiency of trichloroacetic acid extraction method used for obtaining a mixture of a wide range of compounds, including biologically active substances of low molecular weight.


2021 ◽  
Vol 4 (1) ◽  
pp. 126-130
Author(s):  
V. R. Hamada ◽  

This article shows the possibility of using a biotechnological method to obtain biologically active compounds based on in vitro cultivation of callus cultures. The callus biomass of Adonis vernalis was obtained in vitro by using the biotechnological method. The extracts based on callus biomass of Adonis vernalis were obtained. The content of flavonoids and phenolic compounds was determined. The antioxidant activity of callus biomass of Adonis vernalis has also been studied. The research results show that the content of biologically active substances and biological activity in callus biomass does not differ from plant raw materials.


Author(s):  
Ivan A. Abashkin ◽  
Yuriy A. Eleev ◽  
Elena N. Glukhan ◽  
Eugeniy V. Kuchinsky ◽  
Vladimir V. Afanasyev

Sign in / Sign up

Export Citation Format

Share Document