FARMYARD MANURE APPLICATION AS A TOOL FOR MAXIMIZING MINERAL N UPTAKE BY MAIZE GROWN IN NEWLY RECLAIMED SOIL

2010 ◽  
Vol 24 (2) ◽  
pp. 30-37
Author(s):  
F.S. Abd El-Samei ◽  
Ekram A. Megawer ◽  
H. Mahfouz ◽  
E.S. Abdel Aziz
1991 ◽  
Vol 117 (3) ◽  
pp. 313-318 ◽  
Author(s):  
A. R. Sharma ◽  
B. N. Mittra

SUMMARYThe effect on soil fertility and crop performance of different organic fertilizers; paddy straw (PS), farmyard manure (FYM), water hyacinth compost (WHC) and tank silt (TS), at different rates of application and in combination with N fertilizer, was studied in a rice-based cropping system on an acid lateritic soil at Kharagpur, India, during 1985/86. Organic manuring of wet-season rice (first crop) with 5 t PS/ha 10 days before transplanting and 10 t FYM or 10 t WHC/ha at transplanting increased grain yield as much as the application of 30 kg N/ha. Increasing the rates of FYM and WHC application up to 15 t/ha increased yield but increasing the rate of PS beyond 5 t/ha did not. Response to increasing amounts of N was not linear; there was a significant increase up to 90 kg N/ha and a decrease when N was applied in conjunction with organic fertilizers. There was a significant increase in the N uptake of the rice but a decrease in the recovery of applied fertilizer N with the application of increasing rates of organic and N fertilizer.The organic C content of the soil after the rice harvest increased significantly after PS application, whereas there was more available N after WHC and FYM. Increasing the rate of application of PS up to 15 t/ha increased organic C but not available N. Mineral N fertilizer had little effect on fertility build-up. Grain yields of wheat and gram (Cicer arietinum), grown after rice without any additional fertilizer, increased significantly. The residual N effect of the previous crop on wheat or gram yield was small and adding fertilizer directly is considered essential for higher productivity in these crops in a rice-based cropping system.


2019 ◽  
Vol 446 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Arlete S. Barneze ◽  
Jeanette Whitaker ◽  
Niall P. McNamara ◽  
Nicholas J. Ostle

Abstract Aims Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1482
Author(s):  
Silvia Pampana ◽  
Alessandro Rossi ◽  
Iduna Arduini

Winter cereals are excellent candidates for biosolid application because their nitrogen (N) requirement is high, they are broadly cultivated, and their deep root system efficiently takes up mineral N. However, potential N leaching from BS application can occur in Mediterranean soils. A two-year study was conducted to determine how biosolids affect biomass and grain yield as well as N uptake and N leaching in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.), durum wheat (Triticum turgidum L. var. durum), and oat (Avena byzantina C. Koch). Cereals were fertilized at rates of 5, 10, and 15 Mg ha−1 dry weight (called B5, B10, and B15, respectively) of biosolids (BS). Mineral-fertilized (MF) and unfertilized (C) controls were included. Overall, results highlight that BS are valuable fertilizers for winter cereals as these showed higher yields with BS as compared to control. Nevertheless, whether 5 Mg ha−1 of biosolids could replace mineral fertilization still depended on the particular cereal due to the different yield physiology of the crops. Moreover, nitrate leaching from B5 was comparable to MF, and B15 increased the risk by less than 30 N-NO3 kg ha−1. We therefore concluded that with specific rate settings, biosolid application can sustain yields of winter cereals without significant additional N leaching as compared to MF.


1995 ◽  
Vol 124 (1) ◽  
pp. 1-9 ◽  
Author(s):  
G. S. Francis ◽  
R. J. Haynes ◽  
P. H. Williams

SUMMARYTwo field experiments at Canterbury, New Zealand during 1991–93 investigated the effect of the timing of ploughing a 4-year-old ryegrass/white clover pasture and the effect of two winter cover crops on subsequent N mineralization, nitrate leaching and growth and N uptake of the following wheat crops.Net N mineralization of organic N (of plant and soil origin) increased with increased fallow period between ploughing and leaching. The total amount of N accumulated in the profile by the start of winter ranged from 107 to 131 and from 42 to 45 kg N/ha for fallow treatments started in March and May respectively. Winter wheat (planted in May) had no effect on mineral N contents by the start of winter, whereas greenfeed (GF) oats (planted in March) significantly reduced the mineral N content in one year.Cumulative leaching losses over the first winter after ploughing-in pasture varied markedly between years in relation to rainfall amount and distribution. Leaching losses were greater from the March fallow (72–106 kg N/ha) than the May fallow treatments (8–52 kg N/ha). Winter wheat did not reduce leaching losses in either year. GF oats did not reduce losses in 1991/92, but losses in 1992/93, when major drainage events occurred late in the winter, were only c. 40% of those under fallow.Incorporation of a large amount (> 7 t/ha dry matter) of pasture or GF oat residue in spring depressed yield and total N uptake of the following spring wheat, largely due to net N immobilization which could be overcome by the application of fertilizer N.First-year treatments had very little residual effect in the second year. Leaching losses over the second winter (mean 142 kg N/ha) were largely unaffected by the extent of first year leaching losses. Second year leaching losses were greater than first year losses, probably due to the greater amount of mineral N at depth in the soil before the start of the second winter.


2008 ◽  
Vol 17 (1) ◽  
pp. 73 ◽  
Author(s):  
A. NYKÄNEN ◽  
A. GRANSTEDT ◽  
L. JAUHIAINEN

Legume-based leys form the basis for crop rotations in organic farming as they fix nitrogen (N) from the atmosphere for the succeeding crops. The age, yield, C:N, biological N fixation (BNF) and total N of red clover-grass leys were studied for their influence on yields, N uptake and N use efficiency (NUE) of the two sequential cereal crops planted after the leys. Mineral N in deeper soil (30-90 cm) was measured to determine N leaching risk. Altogether, four field experiments were carried out in 1994-1998 at two sites. The age of the ley had no significant effect on the yields and N uptake of the two subsequent cereals. Surprisingly, the residual effect of the leys was negligible, at 0–20 kg N ha-1yr-1. On the other hand, the yield and C:N of previous red clover-grass leys, as well as BNF-N and total-N incorporated into the soil influenced subsequent cereals. NUEs of cereals after ley incorporation were rather high, varying from 30% to 80%. This might indicate that other factors, such as competition from weeds, prevented maximal growth of cereals. The mineral N content deeper in the soil was mostly below 10 kg ha-1 in the sandy soil of Juva, but was 5-25 kg ha-1 in clayey soil of Mietoinen.;


2004 ◽  
Vol 165 (3) ◽  
pp. 791-800 ◽  
Author(s):  
F. Grenon ◽  
R. L. Bradley ◽  
M. D. Jones ◽  
B. Shipley ◽  
H. Peat

2011 ◽  
Vol 51 (No. 12) ◽  
pp. 553-561 ◽  
Author(s):  
B. Čeh-Brežnik ◽  
A. Tajnšek

In Central Slovenia within a long term static experiment IOSDV we investigated the impact of mineral nitrogen (N) fertilisation (0, 65, 130, 195 kg/ha) on the N content and the N amount in winter wheat (larger roots, stems, spikes and leaves) in EC 81/82 and EC 90/91, employing three systems of management: farmyard manure ploughing in before forecrop maize, straw ploughing in and green manure, no organic fertilisation. At EC 81/82 the N content in larger roots was around twice as high as the N content in stems and around twice as low as the N content in spikes and leaves. There was 80% of the whole N amount in plant located in the spikes and leaves (33–168 kg/ha) in EC 81/82 and 90% in EC 90/91. Calculated N recovery from mineral fertiliser was 68–87%; it increased with the increasing N rates in the system with farmyard manure ploughing in and in the system with no organic fertilisation, but not in the system with straw ploughing in and green manure. Between EC 81/82 and EC 90/91 wheat gained from 4 to 34 kg N/ha, but there were more important translocations of N inside the plants, which were higher at higher mineral N rates. There was a significant impact of management system on the N uptake at the highest mineral N rate.


1983 ◽  
Vol 63 (3) ◽  
pp. 563-578 ◽  
Author(s):  
D. W. L. READ ◽  
C. A. CAMPBELL ◽  
V. O. BIEDERBECK ◽  
G. E. WINKLEMAN

The distribution of NO3-N in the soil, and N uptake by the crop during the first 12 yr of a long-term rotation study at Swift Current, Saskatchewan were studied. A considerable amount of NO3-N appeared to be leached beyond the rooting zone of the cereal crop in years of above average precipitation and also in some relatively dry years with heavy spring rains. Thus, leaching of NO3-N seemed to occur even under continuous wheat rotations. At all times there was considerable NO3-N situated at the 60- to 120-cm depth. In wet years N uptake by the plants reduced the amount of NO3-N located in the subsoil, but in dry years the amount of NO3-N in the subsoil remained higher throughout the growing season. The latter could result in groundwater pollution, especially if such a soil was fallowed the next year. Fall rye (Secale cereale L.) made more efficient use of mineral N than spring-sown crops. In dry years more NO3-N persisted in the root zone of N-fertilized wheat than in the root zone of unfertilized wheat, but in wet and average years there was little difference due to N application. The average rate of net NO3-N production in fallow land from spring thaw to freeze-up (166 days) was 107 kg∙ha−1. Values ranged from about 60 to 175 kg∙ha−1 with the lowest values being obtained during very dry or very wet years. The quantity of N mineralized (kg∙ha−1) between spring thaw and freeze-up was related to precipitation (mm) by the equation Nmin = 29.0 + 0.20 precipitation for the 0- to 60-cm depth (R2 = 0.65*). Key words: Nitrate leaching, N uptake, crop rotations, N mineralization rate


Sign in / Sign up

Export Citation Format

Share Document