scholarly journals Climate change and land use impacts on hydrologic processes of watershed systems

2017 ◽  
Vol 8 (3) ◽  
pp. 363-374 ◽  
Author(s):  
Ammara Talib ◽  
Timothy O. Randhir

Land use, land cover and climate change (CC) can significantly influence the hydrologic balance and biogeochemical processes of watershed systems. These changes can alter interception, evapotranspiration (ET), infiltration, soil moisture, water balance, and biogeochemical cycling of carbon, nitrogen, and other elements. The need to evaluate the combined effect of land use change and CC of watershed systems is a focus of this study. We simulated watershed processes in the SuAsCo River watershed in MA, USA, using a calibrated and validated Hydrological Simulation Program Fortran model. Climatic scenarios included downscaled regional projections from Global Climate Model models. The Land Transformation Model was used to project land use. Combined change in land cover and climate reduce ET with loss of vegetation. Changes in climate and land cover increase surface runoff significantly by 2100 as well as stream discharge. Combined change in land cover and climate cause 10% increase in peak volume with 7% increase in precipitation and 75% increase in effective impervious area. Climate and land use changes can intensify the water cycle and introduce seasonal changes in watershed systems. Understanding dynamic changes in watershed systems is critical for mitigation and adaptation options. We propose restoration strategies that can increase the resilience of watershed systems.

2016 ◽  
Vol 40 (6) ◽  
pp. 647-657 ◽  
Author(s):  
Lívia Alves Alvarenga ◽  
Carlos Rogério de Mello ◽  
Alberto Colombo ◽  
Luz Adriana Cuartas ◽  
Sin Chan Chou

ABSTRACT Climate change impacts need to be considered in water resource planning. This work aims to study of the impacts climate change on Lavrinha headwater watershed, located in the Mantiqueira Range, southeastern Brazil. The impacts from climate change (RCP 8.5 scenario) in the Lavrinha watershed runoff were analyzed based on the "Distributed Hydrology Soil Vegetation Model" (DHSVM), forced with the climate simulated for this future climate change scenario. These simulations, in turn, were generated by the Eta regional climate model coupled to Global Climate Model (GCM) HadGEM2-ES for the 2011-2040, 2041-2070 and 2071-2099 periods. The results of this study showed that the runoff is very sensitive to rising temperatures and reduced precipitation, both projected for the RCP 8.5 scenario. The hydrological simulation projected a reduction in the monthly streamflow between 20 and 77% over the twenty-first century (2011-2099), corresponding to drastic reductions in the runoff behavior and consequently in the water production capacity of the region.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
R. B. Singh ◽  
Chenchen Shi

Global land use and land cover pattern has greatly changed in the past 50 years, which exerts direct or indirect influence on the climate change remarkably at both regional and global scales. Therefore, observing and estimating the land use impacts on surface climate is essential and has been continuously promoted by researchers. This paper explores the advancement in the models, data, and application for observing and estimating the land use impacts on surface climate and points out further research needs and priorities, which hopefully will provide some references for related studies.


2008 ◽  
Vol 47 (4) ◽  
pp. 1038-1060 ◽  
Author(s):  
K. W. Oleson ◽  
G. B. Bonan ◽  
J. Feddema ◽  
M. Vertenstein ◽  
C. S. B. Grimmond

Abstract Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.


2016 ◽  
Vol 8 (2) ◽  
pp. 235-253 ◽  
Author(s):  
Young Do Kim ◽  
Jung Min Kim ◽  
Boosik Kang

A hydro-environmental model chain in the Doam dam basin, Korea, was developed for an impact assessment under the Intergovernmental Panel on Climate Change's A1B scenario. The feasible downscaling scheme composed of an artificial neural network (ANN) and non-stationary quantile mapping was applied to the GCM (Global Climate Model) output. The impacts under climate and land use change scenarios were examined and projected using the Soil and Water Assessment Tool (SWAT) model. The daily SWAT model was calibrated and validated for 2003–2004 and 2006–2008, respectively. Meanwhile the monthly SS (suspended solids) was calibrated and validated for 1999–2001 and 2007–2009, respectively. The simulation results illustrated that under the assumption of 1–5% urbanization of the forest area, the hydrologic impact is relatively negligible and the climate change impacts are dominant over the urbanization impacts. Additionally the partial impacts of land use changes were analyzed under five different scenarios: partial change of forest to urban (PCFUr), to bare field, to grassland, to upland crop (PCFUp), and to agriculture (PCFA). The analysis of the runoff change shows the highest rate of increase, 73.57% in April, for the PCFUp scenario. The second and third highest rate increases, 37.83% and 31.45% in May, occurred under the PCFA and PCFUr scenarios, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangzheng Deng ◽  
Chunhong Zhao ◽  
Haiming Yan

There have been tremendous changes in the global land use pattern in the past 50 years, which has directly or indirectly exerted significant influence on the global climate change. Quantitative analysis for the impacts of land use and land cover changes (LUCC) on surface climate is one of the core scientific issues to quantitatively analyze the impacts of LUCC on the climate so as to scientifically understand the influence of human activities on the climate change. This paper comprehensively analyzed the primary scientific issues about the impacts of LUCC on the regional climate and reviewed the progress in relevant researches. Firstly, it introduced the influence mechanism of LUCC on the regional climate and reviewed the progress in the researches on the biogeophysical process and biogeochemical process. Then the model simulation of effects of LUCC on the regional climate was introduced, and the development from the global climate model to the regional climate model and the integration of the improved land surface model and the regional climate model were reviewed in detail. Finally, this paper discussed the application of the regional climate models in the development and management of agricultural land and urban land.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


Climate ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 83
Author(s):  
Geofrey Gabiri ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Constanze Leemhuis ◽  
Roderick van der Linden ◽  
...  

The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976–2005) and future climate (2021–2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7333 ◽  
Author(s):  
José Maria Cardoso da Silva ◽  
Alessandro Rapini ◽  
Luis Cláudio F. Barbosa ◽  
Roger R. Torres

In a world where changes in land cover and climate happen faster than ever due to the expansion of human activities, narrowly distributed species are predicted to be the first to go extinct. Studies projecting species extinction in tropical regions consider either habitat loss or climate change as drivers of biodiversity loss but rarely evaluate them together. Here, the contribution of these two factors to the extinction risk of narrowly distributed species (with ranges smaller than 10,000 km2) of seed plants endemic to a fifth-order watershed in Brazil (microendemics) is assessed. We estimated the Regional Climate Change Index (RCCI) of these watersheds (areas with microendemics) and projected three scenarios of land use up to the year 2100 based on the average annual rates of habitat loss in these watersheds from 2000 to 2014. These scenarios correspond to immediate conservation action (scenario 1), long-term conservation action (scenario 2), and no conservation action (scenario 3). In each scenario, areas with microendemics were classified into four classes: (1) areas with low risk, (2) areas threatened by habitat loss, (3) areas threatened by climate change, and (4) areas threatened by climate change and habitat loss. We found 2,354 microendemic species of seed plants in 776 areas that altogether cover 17.5% of Brazil. Almost 70% (1,597) of these species are projected to be under high extinction risk by the end of the century due to habitat loss, climate change, or both, assuming that these areas will not lose habitat in the future due to land use. However, if habitat loss in these areas continues at the prevailing annual rates, the number of threatened species is projected to increase to more than 85% (2,054). The importance of climate change and habitat loss as drivers of species extinction varies across phytogeographic domains, and this variation requires the adoption of retrospective and prospective conservation strategies that are context specific. We suggest that tropical countries, such as Brazil, should integrate biodiversity conservation and climate change policies (both mitigation and adaptation) to achieve win-win social and environmental gains while halting species extinction.


Sign in / Sign up

Export Citation Format

Share Document