scholarly journals Fecal contamination of drinking water in Kericho District, Western Kenya: role of source and household water handling and hygiene practices

2016 ◽  
Vol 14 (4) ◽  
pp. 662-671 ◽  
Author(s):  
Johana Kiplagat Too ◽  
Willy Kipkemboi Sang ◽  
Zipporah Ng'ang'a ◽  
Musa Otieno Ngayo

Inadequate protection of water sources, and poor household hygienic and handling practices have exacerbated fecal water contamination in Kenya. This study evaluated the rate and correlates of thermotolerant coliform (TTC) household water contamination in Kericho District, Western Kenya. Culture and multiplex polymerase chain reaction (PCR) techniques were used to characterize TTCs. The disk diffusion method was used for antibiotic susceptibility profiling of pathogenic Escherichia coli. Out of the 103 households surveyed, 48 (46.6%) had TTC contaminated drinking water (TTC levels of >10 cfu/100 mL). Five of these households were contaminated with pathogenic E. coli, including 40% enteroaggregative E. coli, 40% enterotoxigenic E. coli, and 20% enteropathogenic E. coli. All these pathogenic E. coli strains were multidrug resistant to sulfamethoxazole/trimethoprim, ampicillin, tetracycline and ampicillin/sulbactam. Rural household locality, drinking water hand contact, water storage container cleaning practice, hand washing before water withdrawal, water source total coliforms <10 cfu/100 mL, temperature, and free chlorine levels were associated with TTC contamination of household drinking water. Significant proportions of household drinking water in Kericho District are contaminated with TTCs including with pathogenic multidrug-resistant E. coli. Source and household hygiene and practices contribute significantly to drinking water contamination.

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


Chemotherapy ◽  
2015 ◽  
Vol 61 (2) ◽  
pp. 72-76 ◽  
Author(s):  
Hamid Lavakhamseh ◽  
Parviz Mohajeri ◽  
Samaneh Rouhi ◽  
Pegah Shakib ◽  
Rashid Ramazanzadeh ◽  
...  

Background:Escherichia coli isolates displaying multidrug-resistance (MDR) are a major health care problem that results in mortality and morbidity. Integrons are DNA elements in E.coli that are related to antibiotic resistance. The aim of this study was to determine class 1 and 2 integrons and MDR in E. coli isolates obtained from patients in two Sanandaj hospitals, located in Iran. Materials and Methods: 120 isolates of E. coli were obtained from clinical specimens (from November 2013 to April 2014), and the susceptibility of E. coli antimicrobial agents was determined using the Kirby-Bauer disk diffusion method according to the CLSI. PCR were applied for detection of class 1 and 2 integrons in E. coli isolates. SPSS software v16 and the χ2 test were used for statistical analysis in order to calculate the association between antibiotic resistance and the presence of integrons (p < 0.05). Results: In a total of 120 E. coli isolates, 42.5% had MDR. Integrons were found in 50.9% of the MDR isolates, and included 47.05% class 1 and 3.92% class 2 integrons. The strains did not have both classes of integrons simultaneously. An association between resistance to antibiotics and integrons was found. Conclusion: Our results showed that int1 and int2 genes present in E. coli isolates obtained from patients cause MDR in this isolates. Since such bacteria are a reservoir for the transmission of MDR bacteria, appropriate programs are necessary to reduce this problem.


2019 ◽  
Vol 16 (4(Suppl.)) ◽  
pp. 0986
Author(s):  
Al-Hasnawy Et al.

Antibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. So, the growth of Uropathgenic Escherichia coli (UPEC) isolates with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that thwart therapy for (UTIs) has been detected and has straight squeezed costs and extended hospital stays. This study aims to detect MDR- and XDR-UPEC isolates. Out of 42 UPEC clinical isolates were composed from UTI patients. The bacterial strains were recognized by standard laboratory protocols. Susceptibility to antibiotic was measured by the standard disk diffusion method Out of 42 Uropathogenic E. coli, 37 (88.09%) were found to be MDR while 5 isolates (11.90%) were XDR. The present study concluded high prevalence of uropathogenic Escherichia coli (UPEC) with Multidrug-resistant (MDR) isolated from urinary tract infection in Babylon province – Iraq.


Author(s):  
Courage Kosi Setsoafia Saba ◽  
Akosua Bonsu Karikar ◽  
Enoch Yeleliere ◽  
Patrick Takyi ◽  
Stephen Wilson Kpordze

Microbial contamination of vended foods are of public health importance due to the potential of becoming a reservoir of foodborne pathogens and resistant strains of bacteria. This study looked at the presence of pathogenic bacteria in a popular Ready-To-Eat (RTE) traditional food, Fufu in Ghana. Sixty (60) Fufu samples were obtained from various food joints categorized as Opened, Semi-closed and Closed or Restaurants. Samples were processed and analyzed using standard bacteriological methods. The susceptibility profiles of the isolates were obtained by using the Kirby-Bauer disk diffusion method with the EUCAST guidelines with the five antibiotics. Prevalence of E. coli was 85% and Salmonella species was 68%. Microbial count of isolated E. coli ranged from 0 to 3×106 cfu/ml. There were no significant differences (p>0.05) among the different modes of operations. Fufu samples from Opened, Semi-closed and Closed joints were respectively contaminated with E. coli and Salmonella species as follows: 92%, 76%; 80%, 60% and 80%, 65%. The Salmonella species showed highest resistance to erythromycin (58.5%) and E. coli species were commonly resistant to Ceftazidime (88.2%) and Ceftriaxone (94.1%). All isolates were susceptible to nitrofurantoin. Multidrug resistance was detected among 27.5% of E. coli strains and 14.6% of Salmonella species. Fufu from the different eating joints in the Tamale Metropolis were substantially contaminated with multidrug resistant pathogens. The study recommends surveillance studies of resistant pathogens in foods, increased education and training of food vendors on sanitation, food handling and safety practices in the region.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aklilu Feleke Haile ◽  
Silvia Alonso ◽  
Nega Berhe ◽  
Tizeta Bekele Atoma ◽  
Prosper N. Boyaka ◽  
...  

Escherichia coli O157:H7 is an important foodborne pathogen but largely under investigated in Africa. The objectives of this study were to estimate the prevalence and pattern of antimicrobial resistance of E. coli O157:H7 in lettuce in Addis Ababa, Ethiopia. A total of 390 retail lettuce samples were collected across the 10 subcities of Addis Ababa. E. coli O157:H7 was isolated and identified following ISO-16654:2001 standard. The isolates were further tested for antimicrobial susceptibility to 13 antimicrobials using the Kirby–Bauer disk diffusion method. Out of the 390 lettuce samples examined, two (0.51%) carried E. coli O157:H7. The antimicrobial susceptibility pattern of strains showed resistance to ampicillin (100%) and tetracycline (50.0%). One of the two isolates was multidrug resistant to two antimicrobials tested. The results of this study demonstrate the presence of drug-resistant E. coli O157:H7 in lettuce in markets in Addis Ababa. Despite the low prevalence, its presence in a product that is eaten raw highlights potential public health risk in the area associated with this pathogen.


2020 ◽  
Vol 65 (10) ◽  
pp. 638-644
Author(s):  
L. V. Suzhaeva ◽  
S. A. Egorova

Recent studies have shown that bacterial resistance existed long before antimicrobials were used in medicine, and not only pathogens are resistant to antibiotics. 511 strains of E. coli isolated from the intestinal microbiota of children aged 1 month to 17 years living in St. Petersburg were studied: the susceptibility to 15 antibiotics was determined by the disk diffusion method, as well as the susceptibility to 6 commercial bacteriophages produced by «Microgen» (Russia). The b-lactamase genes of molecular families TEM, SHV, OXA, and CTX-M were detected by multiplex PCR. 39,3% E. coli isolates were resistant to one or more antimicrobial classes. The proportion of multidrug resistant isolates (resistant to 3 or more classes) was 16,6%. Multidrug resistance to clinically significant antimicrobial classes (extended-spectrum cephalosporins (ESC) + fluoroquinolones + aminoglycosides) was detected in 0,8% isolates. Resistance to aminopenicillins was detected in 29,5%, ESC - 11,2%, fluoroquinolones - 13,3%, tetracycline - 20,0%, chloramphenicol - 9,8%, aminoglycosides - 2,5% isolates. b-lactam resistance was due to the beta-lactamase production: to ampicillin - the molecular family TEM (81,9%), ESC - the CTX-M molecular family (87,7%) CTX-M1 - (66%) and CTX-M9 groups (34%). 43,5% multidrug resistant E. coli isolates were susceptible to at least one of the six commercial bacteriophages produced by «Microgen». The study showed that the intestinal microbiota of children is an important reservoir of E. coli resistant (including multidrug resistance) to various classes of antibiotics, and bacteriophage therapy is an alternative method for eradication of antibiotic-resistant E. coli.


2020 ◽  
Vol 18 ◽  
Author(s):  
Elhassan Benyagoub ◽  
Miaad K. Alkhudhairy ◽  
S. Mohamed Benchaib ◽  
Abdelmadjid Zaalan ◽  
Youcef Mekhfi ◽  
...  

Background: Emergence of multidrug-resistant uropathogenic strains mainly the global spread of extended-spectrum betalactamase (ESBL) genes accompanied both by uncontrolled use of antibacterial agents and a considerable decrease in their activities makes the monitoring of the resistance pattern one of necessary means that could help the medical practitioners to choose the best treatment. For this purpose and during four months from March 1 to June 30 (2019), an experimental study has been carried out on urine specimens of 123 inpatients (IP) and outpatients (OP) at infectious disease service Boudjemaa TOURABI Public Hospital of Bechar (Algeria), aiming the detection of ESBL-producing Enterobacteriaceae uropathogenic strains. Methods: Firstly, the antibiotic susceptibility testing has been carried out by using the disk diffusion method to determine not only the multidrug resistance patterns, but also the multiple antibiotic resistance indexes of uropathogenic strains isolated from clinical IP and OP samples. Secondly, the ESBL detection was done by using the following methods: synergy tests based on the synergy between a thirdgeneration cephalosporin and clavulanate, double-disc synergy test (DDST) and phenotypic tests on a cloxacillin-containing agar. Results: As a result, 56 patients had a urinary tract infection (UTI) in overall 123 patients; a frequency of 45,52%. Through a UTI’s frequency of 64,7%, the female gender was the most affected. All age groups were affected by UTI, with a mean age of 38,47±19,97 years old. Knowing that UTIs’ patients having ages ranged from 16 to 49 years old were most affected compared to other ages’ groups, with a frequency of 66,6 and 50% for female and male gender, respectively. The microbial strains represented by the bacteria group were predominant, ie (98,22%) followed by yeasts (1,78%), where Gram-negative bacilli showed (96,36%) of the uropathogenic agents, so (3,64%) were Gram-positive bacteria. The antibiotic resistance profile of isolated Enterobacteriaceae showed very high resistance rates for the species of Escherichia coli, Klebsiella spp, and Proteus spp to aminopenicillins, cephalosporins, and less against carbapenems and other drug groups. E. coli had presented the highest multidrug resistance followed by Klebsiella spp with a MAR index ranged from 0,53 to 0,82. Within this range, a total of 28 isolate (25 E. coli, 2 Klebsiella spp, and 1 Proteus mirabilis) had shown resistance against 9 to 14 out of the 17 tested antibiotics. The rate of ESBL-producing Enterobacteriaceae strains was 23,07 and 55,26% for inpatients and outpatients respectively, where E.coli was the most important ESBL producers out of all isolated strains. Conclusion: An alarming ESBLs rate for outpatients which is usually higher among inpatients with UTI, who receive several classes of antibiotics. Such condition should be considered as a major public health concern, and measures must be taken to establish the sources and drivers of this issue. Thus, the findings of this research pushes health sector stakeholders as well as scientific communities to act on reducing the transmission of the multidrug-resistant strains that threatens several classes of life-saving antibiotics.


2014 ◽  
Vol 8 (05) ◽  
pp. 597-604 ◽  
Author(s):  
Seniha Senbayrak Akcay ◽  
Asuman Inan ◽  
Simin Cevan ◽  
Ayse Nilufer Ozaydın ◽  
Naz Cobanoglu ◽  
...  

Introduction: This study aimed to demonstrate the changing epidemiology of infecting microorganisms and their long-term resistance profiles and to describe the microbiological point of view in anti-infective management of intensive care unit (ICU) patients. Methodology: A total of 5,690 isolates of Gram-negative bacilli were included in this study. Antibiotic susceptibility was tested using the disk diffusion method and Vitek 2 system. Chi-square tests were used for hypothesis testing. Results: The most frequently isolated organisms were A. baumannii (37.3%), P. aeruginosa (30.3%), Enterobacter spp. (10.4%), E. coli (10.4%), and Klebsiella spp. (8.9%). A. baumannii was the most frequently isolated organism from the respiratory tract (43.4%); the susceptibility rates for imipenem and meropenem decreased to 7% and 6% (p < 0.0001), respectively. The percentage of multidrug-resistant (MDR) A. baumannii isolates continuously increased from 18.7% in 2004 to 69% in 2011 (p < 0.0001), whereas MDR P. aeruginosa isolates increased from 1.5% to 22% (p < 0.0001). Carbapenem-resistant Klebsiella isolates emerged in 2010 and increased to 20% in the next year. The rates of ESBL-producing Enterobacteriaceae in the ICU was very high in 2011 – 50% for E. coli and 80% for Klebsiella strains. Conclusion: The most common isolated Gram-negative bacillus in our study was A. baumannii and that the prevalence of MDR isolates has increased markedly over. Accordingly, the comparison of antibiotic resistance of other pathogens in 2004 and 2011 displayed an increasing trend. These data imply the urgent need for new and effective strategies in our hospital and in the region.


Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 86 ◽  
Author(s):  
Samer Swedan ◽  
Heba Abu Alrub

The study investigated the prevalence of potentially pathogenic and drug resistant Escherichia coli among drinking water sources in Jordan. A total of 109 confirmed E. coli isolates were analyzed. Antimicrobial susceptibility testing was done using the Kirby Bauer disk diffusion method. Phenotypic identification of extended spectrum beta-lactamase (ESBL) and carbapenemase production was done using the double disk synergy test and the modified Hodge test, respectively. Isolates’ plasmid profiles were determined by gel electrophoresis. PCR was used for detection of virulence and resistance genes. Overall, 22.0% of the isolates were potentially intestinal pathogenic E. coli (IPEC); namely enteroaggregative E. coli (16.5%), enteropathogenic E. coli (2.8%), enteroinvasive E. coli (1.8%), and enterohemorrhagic E. coli (0.9%). A third of the isolates were multi-drug resistant. The highest rates of antimicrobials resistance were observed against ampicillin (93.6%) and sulfamethoxazole/trimethoprim (41.3%). All isolates were susceptible to imipenem, meropenem, doripenem and tigecycline. The prevalence of ESBL and carbapenemase producers was 54.1% and 2.8%, respectively. BlaVIM was the most prevalent resistance gene (68.8%), followed by blaCTX (50.5%), blaTEM (45.9%), blaNDM (11%), blaKPC (4.6%), and blaSHV (0.9%). Fifty-eight (53.2%) isolates contained one or more plasmid ranging from 1.0 to 8.0 kbp. Overall, high prevalence of potentially pathogenic and resistant isolates was observed.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Dhifar Raa’d Al-Guranie ◽  
Sareaa Maseer Al-Mayahie

The emergence of Escherichia coli sequence type 131 (E. coli ST131) clone represents a major challenge to public health globally, since this clone is reported as highly virulent and multidrug-resistant, thus making it successfully disseminated worldwide. In Iraq, there is no previous study dealing with this important clone, so this project was suggested to investigate its presence within uropathogenic E. coli (UPEC) from Iraqi patients in Wasit Province. A total of 112 UPEC isolates from cases of acute urinary tract infection (UTI) were analysed for phylogenetic groups by quadruplex PCR; then, these isolates were investigated for E. coli ST131 clone by both conventional and real-time PCR procedures. The antibiotic susceptibility test was performed by the disk diffusion method. The results revealed that, out of 112 UPEC isolates, 38 (33.9%) belonged to phylogroup B2. For conventional PCR, 92.1% (35/38) of B2 E. coli isolates were positive for E. coli ST131, of which 34 were O25b-ST131 strain and 1 was O16-ST131 strain. However, serogroups O25b and O16 represented 17.1% and 2.8%, respectively. By RT-PCR assay, 15.1% (17/112) and 44.7% (17/38) of total and B2 E. coli isolates were confirmed as being E. coli ST131, respectively. The highest resistance rates of E. coli ST131 isolates were against the β-lactams, while low resistance rates were against amikacin, nitrofurantoin, and gentamicin. Fortunately, all isolates were susceptible to carbapenems. Moreover, 52.9% (9 out of 17) of E. coli ST131 isolates were MDR. In conclusion, the presence of E. coli ST131 among UPEC isolates from Iraqi patients is confirmed with high resistance to most antimicrobials included in this study.


Sign in / Sign up

Export Citation Format

Share Document